Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ( x - 2 ) . e 2 x , trục tung và trục hoành. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox có dạng π ( e a + b ) c . Khi đó a+b+c bằng
A. 2
B. 56
C. -1
D. -24
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = 1 cos x ; y = 0; x = 0; x = π 3 Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox là.
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = 1 c o s x , y = 0 , x = 0 , x = π 3 . Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox là
A. V = π
B. V = 2 π
C. V = π 3
D. V = π 2
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y =sinx.cosx, trục tung, trục hoành và đường thẳng x =π/2 . Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox.
A. V =π/16.
B. V = π 2 16
C. V = π 2 + π 16
D. V = π 2 4
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ( x - 1 ) e 2 x , trục tung và đường thẳng y = 0. Tính thể tích của khối tròn xoay thu được khi quay hình (H) quanh trục Ox
A. V = π 2 e 4 - 13
B. V = π 32 e 4 + 4
C. V = π 32 e 4 - 11
D. V = π 32 e 4 - 5
Tìm hoành độ giao điểm của hai dồ thị, ta có:
( x - 1 ) e 2 x = 0 => x = 1
Vậy thể tích của khối tròn xoay thu được khi quay (H) quanh Ox được tính bởi
Đặt: u = ( x - 1 ) 2 , d v e 4 x d x . Ta có du = 2(x -1)dx và v = e 4 x 4 .
Áp dụng công thức tích phân từng phần ta được
Đặt u 1 = x - 1 , d v 1 = e 4 x d x , ta có d u 1 = d x , v 1 = e 4 x 4
Vậy chọn đáp án A.
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = f x = x . e x 2 , trục hoành, đường thẳng x = 1. Tính thể tích V của khối tròn xoay thu được khi (H) quay quanh trục hoành
A. V = e 2 − 1
B. V = π e 2 − 1
C. V = 1 4 π e 2 − 1
D. V = 1 4 π e 2 − 1
Đáp án D.
Thể tích V của khối tròn xoay cần tính
V H = π . ∫ 0 1 f 2 x d x = π . ∫ 0 1 x . e 2 x 2 d x .
Đặt
t = e 2 x 2 ⇔ d t = 2 x 2 ' e 2 x 2 d x = 4 x . t d x ⇔ x d x = d t 4 t
và đổi cận x = 0 → t = 1 x = 1 → t = e 2 .
Khi đó V H = π ∫ 1 e 2 t . d t 4 t = π 4 ∫ 1 e 2 d x = π 4 e 2 − 1 .
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = f x = x e x 2 , trục hoành, đường thẳng x = 1. Tính thể tích V của khối tròn xoay thu được khi (H) quay quanh trục hoành.
A. V = e 2 - 1
B. V = π e 2 - 1
C. V = 1 4 π e 2 - 1
D. V = 1 4 π e 2 - 1
Đáp án D
Phương trình hoành độ giao điểm x e x 2 = 0 ⇔ x = 0 ⇒ V = π ∫ 0 1 xe 2 x 2 d x = 1 4 π e 2 - 1 .
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), y=g(x) và hai đường thẳng x=a, x=b như hình vẽ. Khẳng định nào sau đây là đúng?
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành và hai đường thẳng x=a, y=b như hình vẽ bên. Khẳng định nào sau đây là đúng?