Bài 1 Cho tam giác DEF vuông tại D, biết DE = 9cm, EF = 15cm. Hãy giải tam giác vuông DEF
Bài 2 Cho tam giác MNP vuông tại M. Biết MN=7cm, góc P = 350. Hãy giải tam giác vuông MNP
Cho tam giác MNP vuông tại N biết MN=20cm, MP=25cm
A, tính MP
B, cho tam giác DEF có DE=10cm, DF=24cm,EF=26cm. Chứng minh tam giác DEF là tam giác vuông
1.a) Cho tam giác MNP vuông tại N biết MN =20cm ;MP=25cm .Tìm độ dài cạnh NP? b) Cho tam giác DEF có DE=10cm;EF=26cm.Chứng minh tam giác DEF vuông?
vẽ hình cho mình luôn nhé ! Thanks
Cho tam giác ABC vuông tại A, BC=7, AC=6. Hãy giải tam giác vuông ABC?
Cho tam giác DEF vuông tại D, DE=7, Ê=40 độ. Hãy giải tam giác vuông DEF?
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
Cho tam giác MNP vuông tại M đường cao MK, biết MN = 9cm; NP = 15cm. Tính KN?
Áp dụng HTL: \(KN=\dfrac{MN^2}{NP}=5,4\left(cm\right)\)
cho tam giác MNP vuông tại m có N = 60 độ và MN = 7cm tia phân giác của góc N cắt MP tại D kẻ DE vuông góc vs NP tại E
a) c/m tam giác NMD = tam giác NDE
b) c/m tam giác MNE là tam giác đều
c)NP = ?
a) Xét hai tam giác vuông tam giác NMD ( M = 90 độ ) và tam giác END ( E = 90 độ ) có
ND là cạnh chung
góc MND = góc END ( vì ND là tia phân giác )
Do đó tam giác NMD = tam giác END ( cạnh huyền - góc nhọn )
b) Ta có tam giác NMD = tam giác END ( cmt )
=> NM = NE ( hai cạnh tương ứng )
Mà góc N = 60 độ
=> tam giác MNE là tam giác đều
c) Ta có tam giác MNE là tam giác đều
=> NM = NE = ME ( 1 )
=> góc NME = 60 độ
Ta có góc NME + góc EMP = 90 độ
Mà góc NME = 60 độ ( cmt )
=> góc EMP = 30 độ ( * )
Ta có tam giác NMP vuông tại M
=> góc N + góc P = 90 độ ( hai góc nhọn phụ nhau )
Mà góc N = 60 độ
=> góc P = 30 độ (**)
Từ (*) và (**) suy ra
tam giác EMP cân tại E
=> EM = EP ( 2 )
Từ (1) và (2) suy ra
NE = EP = 7 cm
Mà NE + EP = NP
7 cm + 7 cm = NP
=> NP = 14 cm
Vậy NP = 14 cm
Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)
=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)
=> \(DF=\sqrt{144}=12\left(cm\right)\)
Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh
Xét tam giác ABC và tam giác DEF ta có :
\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)
\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)
\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)
=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)
=> Tam giác ABC đồng dạng tam giác DEF
Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được
hai tam giác ko thể đồng dạng bạn nhé
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và tam giác MNP vuông tại M có MN=9cm, NP=15cm.
a) tính cạnh BC và MP
b) tam giác ABC có đồng dạng tam giác MNP không? Vì sao?
Bài 1. Cho tam giác ABC cân tai A có góc A =70 độ. Tính số đo độ góc C
Bài 2. Cho tam giác ABC vuông tại A, có góc B =60 độ và AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a, Chứng minh tam giác ABD=tam giác EBD
b, Chứng minh tam giác ABE là tam giác đều
c, Tính độ dài cạnh BC
Bài 3. Cho tam giác ABC cân tại A có AB =5cm, BC = 6cm. Kẻ AD vuông góc với BC (D thuộc BC)
a, Tìm các tam giác bằng nhau trong hình
b. Tính ddoojj dài AD
Bài 4. Cho tam giác MNP vuông tại N biết MN=20cm, MP =25cm.
a,Tìm độ dài cạnh NP?
b, Cho tam giascc DEF có DE= 10cm, DF= 24cm, EF= 26cm.Chứng minh tam giác DEF vuông?
Làm ơn giúp mình đi mình đang cần gấp lắm
Cho tam giác MNP vuông tại M, có MN = 3cm, NP= 5cm. Giải tam giác vuông MNP ( góc làm tròn đến độ )
MP=4cm
\(\widehat{N}=53^0;\widehat{P}=37^0\)