Cho tỉ lệ thức: a b = c d . Chứng minh đẳng thức sau: 5 a + 3 b 3 a − 7 b = 5 c + 3 d 3 c − 7 d
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng minh đẳng thức sau : \(\dfrac{2a+3b}{3a-5b}\) = \(\dfrac{2c+3d}{3c-5d}\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk, c=dk$
Khi đó:
$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$
$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$
Từ $(1); (2)$ ta có đpcm.
Chứng minh rằng ta có tỉ lệ thức a/b=c/d nếu có một trong các đẳng thức sau(giả thiết các tỉ lệ thức đều có nghĩa):
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\dfrac{a+b+c+d}{a-b+c-d}=\dfrac{a+b-c-d}{a-b-c+d}\)
Theo tính chất dãy tỉ số bằng nhau :
\(\dfrac{a+b+c+d}{a-b+c-d}=\dfrac{a+b-c-d}{a-b-c+d}=\dfrac{\left(a+b+c+d\right)+\left(a+b-c-d\right)}{\left(a-b+c-d\right)+\left(a-b-c+d\right)}=\dfrac{\left(a+b+c+d\right)-\left(a+b-c-d\right)}{\left(a-b+c-d\right)-\left(a-b-c+d\right)}\)
\(\Leftrightarrow\dfrac{2a+2b}{2a-2b}=\dfrac{2c+2d}{2c-2d}\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất thêm một lần nữa , có :
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\dfrac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}\)
\(\Leftrightarrow\dfrac{2a}{2c}=\dfrac{2b}{2d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(\text{Chứng minh rằng ta có tỉ lệ thức \frac{a}{b}= \frac{c}{d} nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa )}\)\(\text{Chứng minh rằng ta có tỉ lệ thức }\)\(\frac{a}{b}=\frac{c}{d}\)\(\text{ nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa )}\)
\(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\text{MÌNH ĐANG CẦN GẤP LẮM GIẢI GIÚP MÌNH NHA }\)
Chứng minh rằng ta cớ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)nếu có đẳng thức sau:( giả thiết tỉ lệ thức có nghĩa):
( a + b + c +d) . ( a - b - c - d) = ( a - b + c - d) . ( a + b - c - d)
Chứng minh từ đẳng thức ad=bc(c,d khác 0) ta có thể suy ra tỉ lệ thức sau a/c=b/d
Trần Trương Quỳnh Hoa và câu hỏi tương tự có đấy, tick cho mình nha!
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa):
a) a+b / a-b = c+d / c-d
b) (a+b+c+d) . (a-b-c+d) = (a-b+c-d) . (a+b-c-d)
a, a/b = c/d => a+b/c+d = a-b/c-d
=> a+b/a-b = c+d/c-d
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa):
a) a+b / a-b = c+d / c-d
b) (a+b+c+d) . (a-b-c+d) = (a-b+c-d) . (a+b-c-d)
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau (giả thiết các tỉ lệ thức đều có nghĩa) :
a) a+b/a-b = c+d/c-d
b)(a+b+c+d)*(a-b-c-d)=(a-b+c-d)8(a+b-c-d)
Chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có một trong các đẳng thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) a) a+b/a-b=c+d/c-d b) (a+b+c+d).(a-b-c+d)=(a-b+c-d)*(a+b-c-d)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đổi trung tỉ)
MINH.HOC LOP 6 CHUA HOC DEN DAY TI SO BANG NHAU
chứng minh rằng ta có tỉ lệ thức a/b = c/d nếu có 1 trong caqcs đẳng thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) a) a+b/a-b = c+d/c-d b) (a+b+c+d)(a-b-c+d) = (a-b+c-d)(a+b-c-d)