Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Nguyễn Thị Thanh Huyền
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2017 lúc 11:40

Chọn D

Ta có: 

Ta có: 

Hệ số của số hạng chứa x 3  là: C 10 3 = 120.    

Xem chi tiết
Green sea lit named Wang...
19 tháng 9 2021 lúc 11:43

(4n + 5) : 3 - 121 : 11 = 4

(4n + 5) : 3 - 11 = 4

(4n + 5) : 3 = 4 + 11

4n + 5) : 3 = 15

4n + 5 = 15 × 3

4n + 5 = 45

4n = 45 - 5

4n = 40

⇒n = 10

Khách vãng lai đã xóa
LÊ THỊ THU HƯỞNG
Xem chi tiết
robert lewandoski
22 tháng 6 2015 lúc 8:46

1)\(8.2^n=128\Rightarrow2^n=128:8\Rightarrow2^n=16\Rightarrow2^n=2^4\Rightarrow n=4\)

2)\(121.11^n=1331\Rightarrow11^n=1331:121\Rightarrow11^n=11\Rightarrow n=1\)

3)\(7^n:49=343\Rightarrow7^n:7^2=7^3\Rightarrow7^n=7^3.7^2\Rightarrow7^n=7^5\Rightarrow n=5\)

nhớ **** cho mình nhé

blua
Xem chi tiết
Đỗ Đức Duy
29 tháng 6 2023 lúc 15:36

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2017 lúc 16:05

Phương pháp:

Sử dụng công thức khai triển của nhị thức Newton: 

Theo bài ra ta có:

C�L�I
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2018 lúc 16:31

Ta có 2 2 n + 1 = 1 + 1 2 n + 1 = C 2 n + 1 0 + C 2 n + 1 1 + ... + C 2 n + 1 2 n + 1 .         (1)

Lại có C 2 n + 1 0 = C 2 n + 1 2 n + 1 ;   C 2 n + 1 1 = C 2 n + 1 2 n ;   C 2 n + 1 2 = C 2 n + 1 2 n − 1 ; . . . ;   C 2 n + 1 n = C 2 n + 1 n + 1 .  (2)

Từ (1) và (2), suy ra C 2 n + 1 0 + C 2 n + 1 1 + ... + C 2 n + 1 n = 2 2 n + 1 2     

⇔ C 2 n + 1 1 + ... + C 2 n + 1 n = 2 2 n + 1 2 −   C 2 n + 1 0

⇔ C 2 n + 1 1 + ... + C 2 n + 1 n = 2 2 n − 1 ⇔ 2 20 − 1 = 2 2 n − 1 ⇔ n = 10 .

Vậy n =10 thỏa mãn yêu cầu bài toán.

Chọn đáp án C.