Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tìm số nguyên dương n thỏa mãn  C 2 n + 1 1 + C 2 n + 1 2 + ... + C 2 n + 1 n = 2 20 − 1

A.n= 8

B.n = 9

C.n =10

D. n =11

Cao Minh Tâm
17 tháng 4 2018 lúc 16:31

Ta có 2 2 n + 1 = 1 + 1 2 n + 1 = C 2 n + 1 0 + C 2 n + 1 1 + ... + C 2 n + 1 2 n + 1 .         (1)

Lại có C 2 n + 1 0 = C 2 n + 1 2 n + 1 ;   C 2 n + 1 1 = C 2 n + 1 2 n ;   C 2 n + 1 2 = C 2 n + 1 2 n − 1 ; . . . ;   C 2 n + 1 n = C 2 n + 1 n + 1 .  (2)

Từ (1) và (2), suy ra C 2 n + 1 0 + C 2 n + 1 1 + ... + C 2 n + 1 n = 2 2 n + 1 2     

⇔ C 2 n + 1 1 + ... + C 2 n + 1 n = 2 2 n + 1 2 −   C 2 n + 1 0

⇔ C 2 n + 1 1 + ... + C 2 n + 1 n = 2 2 n − 1 ⇔ 2 20 − 1 = 2 2 n − 1 ⇔ n = 10 .

Vậy n =10 thỏa mãn yêu cầu bài toán.

Chọn đáp án C.