Với x,y,z dương chứng minh (x+y+z)/(x+y)>=3/2
Chứng minh rằng x^2/y^2 +y^2/z^2 +z^2/x^2 >= x/y +y/z +z/x với các số dương x;y;z
\(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\rightarrow\left(a;b;c\right)\) thì abc = 1. BĐT
\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\). Mà \(VT=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\).
Do đó ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{3}\ge a+b+c\).Hay:
\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow f\left(t\right)=t^2-3t\ge0\) với \(t=a+b+c\ge3\sqrt[3]{abc}=3\). Điều này hiển nhiên đúng do
\(f\left(t\right)=t^2-3t=t\left(t-3\right)\ge t\left(3-3\right)=0\) với mọi t > 3
Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1 hay x = y = z
P/s: Sai thì chịu
cho x,y,z là các số thực dương và x^2+y^2+z^2=x+y+z. chứng minh rằng x+y+z+3>=6 căn 3 xy+yz+xz/3. Mn giải giúp mình với ạ
Với các số dương x,y,z. Chứng minh x^2/x+y -x/2 +y^2/y+z -y/2 +z^2/z+x -z/2 >=0
Chứng minh với mọi x,y,z dương thì :
\(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le3\left(x^3+y^3+z^3\right)\)
Ta có : \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le3\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\left(x^3+y^3+z^3\right)-x^2\left(y+z\right)-y^2\left(x+z\right)-z^2\left(x+y\right)\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+x^2\left(x-z\right)+y^2\left(y-x\right)+y^2\left(y-z\right)+z^2\left(z-x\right)+z^2\left(z-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)+\left(y-z\right)\left(y^2-z^2\right)+\left(z-x\right)\left(z^2-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)+\left(y-z\right)^2\left(y+z\right)+\left(z-x\right)^2\left(z+x\right)\ge0\) (luôn đúng vì x,y,z > 0)
Vậy bđt ban đầu được chứng minh
Áp dụng BĐT Bunhiacopxki cho 3 số dương ,ta có:
(x2+y2+z2)(1+1+1)\(\ge\)(x+y+z)2
↔3(x2+y2+z2)\(\ge\)(x+y+z)2 (dấu = xảy ra khi x=y=z)
Với x, y, z là các số dương, chứng minh:
2(1/x+y + 1/y+z + 1/z+x) >= 9/x+y+z
Áp dụng Bunhiacopxki dạng phân thức:
\(VT=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\ge\frac{\left(\sqrt{2}.3\right)^2}{2\left(x+y+z\right)}=\frac{9}{x+y+z}\)
Dấu "=" khi x = y = z > 0
cũng là Cauchy-Schwarz dạng Engel nhưng làm khác idol :))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{\left(1+1+1\right)^2}{x+y+y+z+z+x}=\frac{9}{2\left(x+y+z\right)}\)
=> \(2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2\left(x+y+z\right)}\cdot2=\frac{9}{x+y+z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z
Cho x, y, z thỏa mãn: \(x^3-y^2-y=y^3-z^2-z=z^3-x^2-x=\frac{1}{3}\)
Chứng minh rằng: x, y, z dương và x = y = z
cho 3 số dương x,y,z thỏa mãn x+y+z=3.
chứng minh: \(\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge\dfrac{3}{2}\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=2
Chứng minh: x+2y+z>=(2-x)(2-y)(2-z)
viết các số thực dương x,y,z thỏa mãn xyz=1,chứng minh rằng
\(\sqrt{\dfrac{x^4+y^4+z}{3z^3}}+\sqrt{\dfrac{y^4+z^4+x}{3x^3}}+\sqrt{\dfrac{z^4+x^4+y}{3y^3}}\ge x^2+y^2+z^2\)
Mọi người giúp em với em cần gấp ạ