Tìm tất cả các giá trị thực của tham số m để hàm số y = ( 1 - m ) x 4 - m x 2 + 2 m - 1 có đúng một cực trị.
A.
B.
C.
D.
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
1. Tìm tất cả các giá trị thực của tham số m để hàm số y= mx - sin3x đồng biến trên khoảng ( trừ vô cùng ; cộng vô cùng) 2. Tìm tất cả các giá trị thực của tham số m để hàm số y = x + mcosx đồng biến trên khoảng( trừ vô cùng ; cộng vô cùng)
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Tìm tất cả các giá trị thực của tham số m để hàm số y = m - 1 x 4 + 2 m 2 + 1 có một cực trị
A. m ≤ 0 v à m ≥ 1
B. m < 0 v à m > 1
C. 0 ≤ m < 1
D. m ≤ 0 v à m > 1
Tìm tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 - m + 1 x 2 + 2 m + 1 x - m + 1 có cực trị
A.m > 0
B. ∀ m ∈ ℝ
C. m ≢ 0
D. Không có m
Tìm tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 - ( m + 1 ) x 2 + ( 2 m + 1 ) x - m + 1 có cực trị.
A.m > 0.
B.
C.
D. Không có m
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Cho hàm số
y = 1 3 x 3 - m - 1 x 2 + m - 3 x + m 2 - 4 m + 1
Tìm tất cả các giá trị thực của tham số m để hàm số có 5 điểm cực trị.
A. m > 3.
B. m > 1.
C. m > 4.
D. -3 < m < -1.
Tìm tất cả các giá trị thực của tham số m để hàm số y=x3-(2m+1)x2+m+3 có điểm cực trị?
Tìm tất cả các giá trị thực của tham số m để hàm số y = m + 1 x 4 − m 2 − 1 x 2 − 1 có đúng một cực trị.
A. m ≤ 1
B. m > − 1
C. m ≤ 1 , m ≠ − 1
D. m < 1 , m ≠ − 1
Đáp án C
Với m = − 1 ⇒ y = − 1 hàm số không có cực trị.
Với m ≠ 1.
Hàm số có 1 cực trị ⇔ a b = m + 1 m 2 − 1 ≥ 0
⇔ m + 1 2 m − 1 ≤ 0 ⇔ m ≤ 1.
Kết hợp 2 TH suy ra m ≤ 1 , m ≠ − 1.
Tìm tất cả các giá trị thực của tham số m để hàm số y = ( m + 1 ) x 4 - m x 2 + 3 có ba điểm cực trị.
A. m ∈ ( - ∞ ; - 1 ] ∪ [ 0 ; + ∞ )
B. m ∈ ( - 1 ; 0 )
C. m ∈ ( - ∞ ; - 1 ] ∪ [ 0 ; + ∞ )
D. m ∈ ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ )