tìm x,y
A) \(\dfrac{x}{y}=\dfrac{7}{4}\) và x+y=33
b) 3.(x-1)+5=-19
tìm x;y
A) \(\dfrac{2}{5}x-\dfrac{1}{3}=-1\dfrac{1}{2}:\dfrac{5}{4}\)
B) x;y tỉ lệ thuận với 5 và 3 và x+y=32
c) x;y tỉ lệ nghịch với 5 và 3 và x+y = 32
Tìm các số x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và x - 2y + 3z = 33
b) x : y : z = 10 : 6 : 21 và y + 5x - 2z = -42
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
Tìm x,y
a)\(\dfrac{x}{3}=\dfrac{7}{y}\)
b)\(\dfrac{x}{y}=\dfrac{1}{6}\)
c)\(\dfrac{x}{7}=\dfrac{y}{-3}\)
a) Ta có: \(\dfrac{x}{3}=\dfrac{7}{y}\)
nên xy=21
b) Ta có: \(\dfrac{x}{y}=\dfrac{1}{6}\)
nên y=6x
c) Ta có: \(\dfrac{x}{7}=\dfrac{y}{-3}\)
nên -3x=7y
Tìm tất cả các số nguyên x,y
a)\(\dfrac{x}{2}=\dfrac{y}{5} mà x+y=35\)
b)\(\dfrac{x+2}{y+10}=\dfrac{1}{5} và y-3x=2\)
c)\(\dfrac{x}{4}=\dfrac{y}{5} và 2x-y=15\)
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
Tìm x,y biết:
1) \(\dfrac{x}{5}=\dfrac{y}{7}\) và x+y = 48
2) \(\dfrac{x}{4}=\dfrac{y}{-7}\) và x-y=33
3) \(\dfrac{x}{y}=-\dfrac{2}{5}\) và x+y =12
4) \(\dfrac{x}{3}=\dfrac{y}{5}\) và 2x+4y=28
5) \(\dfrac{x}{y}=\dfrac{3}{16}\) và 3x-y=35
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
B1 : Tìm x,y
a) \(\dfrac{x}{-15}=\dfrac{60}{x}\)
b)\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)
c)\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
d) \(\dfrac{x}{2}=\dfrac{y}{5}=xy=10\)
Giúp tui đi :< Tui tick
d: Đặt x/2=y/5=k
=>x=2k; y=5k
Ta có: xy=10
nên k2=1
Trường hợp 1: k=1
=>x=2; y=5
Trường hợp 2: k=-1
=>x=-2; y=-5
Tìm x và y
\(\dfrac{x}{3}=\dfrac{y}{4}\)và\(x+y=14\)
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
\(\dfrac{x}{3}=\dfrac{y}{4}\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}\)=2
* \(\dfrac{x}{3}=2=>x=6\)
*\(\dfrac{y}{4}=2=>y=8\)
Vậy( x, y) ∈{ 6, 8}
Kiểm tra lại nhaa
áp dụng tính chất dãy tỉ số bằng nhau
Ta có:x/3=y/4=x+y/3+4=14/7=2
Vậy x=2.3=6
y=2.4=8
Tìm y
\(\dfrac{2}{5}\) X y : \(\dfrac{7}{4}=\dfrac{7}{8}\)
2\(\dfrac{2}{5}\) : y x 1\(\dfrac{1}{4}\) = 2\(\dfrac{3}{5}\)
\(\dfrac{12}{5}-1\dfrac{2}{5}x\) y = 1\(\dfrac{1}{4}\)
\(\dfrac{2}{5}\) x y : \(\dfrac{7}{4}\) = \(\dfrac{7}{8}\)
\(\dfrac{2}{5}\) x y = \(\dfrac{7}{8}\) x \(\dfrac{7}{4}\)
\(\dfrac{2}{5}\) x y = \(\dfrac{49}{32}\)
y = \(\dfrac{49}{32}\) : \(\dfrac{2}{5}\)
y = \(\dfrac{245}{64}\)
2\(\dfrac{2}{5}\): y x 1\(\dfrac{1}{4}\) = 2\(\dfrac{3}{5}\)
\(\dfrac{12}{5}\): y x \(\dfrac{5}{4}\) = \(\dfrac{13}{5}\)
\(\dfrac{12}{5}\): y = \(\dfrac{13}{5}\): \(\dfrac{5}{4}\)
\(\dfrac{12}{5}\): y = \(\dfrac{52}{25}\)
y = \(\dfrac{12}{5}\): \(\dfrac{52}{25}\)
y = \(\dfrac{15}{13}\)
\(\dfrac{12}{5}\) - 1\(\dfrac{2}{5}\) \(\times\) y = 1\(\dfrac{1}{4}\)
\(\dfrac{12}{5}\) - \(\dfrac{7}{5}\) \(\times\) y = \(\dfrac{5}{4}\)
\(\dfrac{7}{5}\) \(\times\) y = \(\dfrac{12}{5}\) - \(\dfrac{5}{4}\)
\(\dfrac{7}{5}\) \(\times\) y = \(\dfrac{23}{20}\)
y = \(\dfrac{23}{20}\) : \(\dfrac{7}{5}\)
y = \(\dfrac{23}{28}\)