Cho bất phương trình m 2 - x + 12 4 - x 2 ≥ 16 x + 3 m 2 + x + 3 m + 35 .Có tất cả bao nhiêu giá trị nguyên của tham số m ∈ - 10 ; 10 để bất phương trình nghiệm đúng với mọi x ∈ - 2 ; 2 ?
A. 10.
B. 18.
C. 3.
D. 4.
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Cho hai bất phương trình x + 5 ≥ m 2 + 2 m + 12 và x ≥ 7 . Tìm m để hai bất phương trình tương đương.
5A. Các cặp bất phương trình sau đây có tương đương không?
a) x≤3 và 2x≤6 b) x2 + 3 >0 và |3x+1| < -1
5B. bất phương trình sau đây có tương đương không? Vì saO
a) 2+x >4 và -x < -2 b) ( x2+1 )x ≥ 0 và 2x4 ≥ 0
6A. Cho hai bất phương trình x+5 ≥ |m2+2m| + 12 và x≥7 . Tìm m để hai bất phương trình tương đương.
6B. Tìm các giá trị của m để hai bất phương trình x< -2 và x< \(\frac{m^2+4m-9}{2}\) tương đương.
Cho bất phương trình (m-2)x^2 + 2(4-3m)x+10m-11 <=0 .Gọi S là tập hợp các số nguyên dương m để bất phương trình luôn đúng với mọi x<-4
Cho bất phương trình x2-6x +2(m+2)|x-3| +m2 +4m +12 >0
có bao nhiêu giá trị nguyên của m ϵ [-10;10] để bất phương tình đúng với mọi xϵ (-2;5)
\(\Leftrightarrow\left(x-3\right)^2+2\left(m+2\right)\left|x-3\right|+m^2+4m+3>0\)
Đặt \(\left|x-3\right|=t\Rightarrow0\le t< 5\)
\(\Rightarrow t^2+2\left(m+2\right)t+m^2+4m+3>0\) ;\(\forall t\in[0;5)\)
\(\Leftrightarrow\left(t+m+1\right)\left(t+m+3\right)>0\)
\(\Rightarrow-m-3< t< -m-1\)
Pt nghiệm đúng với mọi \(t\in[0;5)\) khi và chỉ khi
\(\left\{{}\begin{matrix}0>-m-3\\5\le-m-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\le-5\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0
với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ ( - ∞ , 0 )
A. m > 2 + 2 3 3
B. m > 2 - 2 3 3
C. m ≥ 2 - 2 3 3
D. m ≥ - 2 - 2 3 3
1) Tìm tập nghiệm S của bất phương trình | 2x+1| > x+1
2) Tìm tất cả giá trị của tham số m để bất phương trình -x^2+x-m>0 vô nghiệm
2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)
Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Tìm các giá trị của tham số m để bất phương trình sau luôn đúng: \(\dfrac{4x^2+4\left(m-2\right)x+22-m}{x^2+x+12}>0\)
giải bất phương trình: x/x+2+6/x-2=2x+12/x^2-4
=>x^2-2x+6x+12=2x+12
=>x^2+4x-2x=0
=>x(x+2)=0
=>x=0(nhận) hoặc x=-2(loại)