Tổng các nghiệm của phương trình ( l o g ( 10 x ) ) 2 - 3 l o g ( 100 x ) = - 5 bằng
A. 11.
B. 11 10 .
C. 110.
D. 101 10 .
số nào dưới đây là nghiệm của phương trình x2 - 6 = x nhưng ko là nghiệm của phương trình x2 - 3x - 10 = 0
A. -2 B. 5 C. 4 D. 3
*) x2 - 6 = x (1)
\(\Leftrightarrow\) x2 - x - 6 = 0
\(\Leftrightarrow\) x2 - 3x + 2x - 6 = 0
\(\Leftrightarrow\) x(x - 3) + 2(x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 2) = 0
\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0
\(\Leftrightarrow\) x = 3 và x = -2
Vậy S = {3; -2}
*) x2 - 3x - 10 = 0 (2)
\(\Leftrightarrow\) x2 - 5x + 2x - 10 = 0
\(\Leftrightarrow\) x(x + 2) - 5(x + 2) = 0
\(\Leftrightarrow\) (x + 2)(x - 5) = 0
\(\Leftrightarrow\) x + 2 = 0 hoặc x - 5 = 0
\(\Leftrightarrow\) x = -2 và x = 5
Vậy S = {-2; 5}
Vậy pt là nghiệm của pt (1) nhưng ko phải nghiệm của pt (2) là 3
Vậy phương án đúng là D
Chúc bn học tốt!!
Giúp mk với, các cậu ơi!!! Giải chi tiết giúp mk nha!
Câu 1: Hãy viết nghiệm tổng quát và biểu diễn tập nghiệm của các phương trình sau:
a) 3x – y = 2
b) 2x + y = 5
c) 4x + 0y = -2
d) 0x + 2y = -4
Gợi ý: Sử dụng kiến thức bài 1(chương III )
Câu 2: Mỗi quả lê giá năm đồng, mỗi quả táo giá bảy đồng. Số tiền mua cả lê và táo là 35 đồng
1) Viết phương trình biểu thị số tiền mua lê và táo?
2) Dạng tổng quát phương trình trên là gì ? Xác định các hệ số?
3) Viết nghiệm tổng quát của phương trình trên?
4) Vẽ minh họa tập nghiệm của phương trình trên?
5) Xác định số quả lê và số quả táo tương ứng có thể mua?
Giải các phương trình sau:
\(\begin{array}{l}a)\;sinx = \frac{{\sqrt 3 }}{2}\\b)\;sin(x + {30^o}) = sin(x + {60^o})\end{array}\)
\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)
Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)
Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).
\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)
Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).
Giả sử ∫ 2 x + 3 x ( x + 1 ) ( x + 2 ) ( x + 3 ) + 1 d x = - 1 g ( x ) + C (C là hằng số). Tính tổng của các nghiệm của phương trình g(x) = 0
A. –1
B. 1
C. 3
D. –3
Đáp án D
Suy ra tổng của các nghiệm của phương trình g(x) = 0 là - 3
Giả sử ∫ 2 x + 3 x ( x + 1 ) ( x + 2 ) ( x + 3 ) + 1 d x = - 1 g ( x ) + C (C là hằng số). Tính tổng của các nghiệm của phương trình g(x) = 0
A. -1
B. 1
C. 3
D. -3
Tổng bình phương các nghiệm của phương trình\(x^2+5x+2+2\sqrt{x^2+5x+10}=0\) là bao nhiêu ?
Đặt \(\sqrt{x^2+5x+10}=a\ge0\)
\(PT\Leftrightarrow a^2+2a-8=0\\ \Leftrightarrow a=2\left(a\ge0\right)\\ \Leftrightarrow x^2+5x+10=4\\ \Leftrightarrow x^2+5x+6=0\\ \Leftrightarrow\left[{}\begin{matrix}x_1=-2\\x_2=-3\end{matrix}\right.\Leftrightarrow x_1^2+x_2^2=4+9=13\)
Vậy ...
Tổng bình phương các nghiệm của phương trình \(x^2+5x+2+2\sqrt{x^2+5x+10}=0\) là bao nhiêu?
Đặt \(\sqrt{x^2+5x+10}=t>0\Rightarrow x^2+5x=t^2-10\)
Phương trình trở thành:
\(t^2-10+2+2t=0\)
\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+5x+10}=2\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
Cho phương trình: ( z2 - z) ( z + 3) (z + 2) = 10 .Tính tổng tất cả các phần thực của các nghiệm phương trình trên.
A. -1
B. -2
C. -3
D. -4
Chọn D.
Phương trình đã cho tương đương với phương trình
z( z + 2) ( z - 1) ( z + 3)
Hay ( z2 + 2z) ( z2 + 2z - 3) = 10
Đặt t = z2 + 2z. Khi đó phương trình trở thành: t2 - 2t – 10 = 0.
Vậy phương trình có các nghiệm:
Tổng tất cả các phần thực của các nghiệm phương trình đã cho là:
-1+ ( -1) + (-1) + ( -1) = -4.
Tổng các nghiệm của phương trình:
\(x\left(2x-3\right)\left(x^2+10\right)=0\)
\(x\left(2x-3\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Ta thấy thừa số 3 có \(x^2+10>0\)
Vì vậy thừa số 3 không thể bằng 0
Vậy , tổng các nghiệm thõa mãn là \(\frac{3}{2}\)
Ta có:
x(2x-3)(\(x^2\)+10)=0
\(\Leftrightarrow\)\(\hept{\begin{cases}x=0\\2x-3=0\\^{x^2+10=0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\2x=3\\x^2=-10\left(\text{vô lý}\right)\text{ }\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy x=0;\(\frac{3}{2}\) là nghiệm của phương trình
Tổng các nghiệm nguyên dương của bất phương trình \(\dfrac{10x^2}{x^2-100}< 10\) là
10x2/x2-100 < 10
<=> 10x2/x2-100 - 10 <0
<=> 10x^2 - 10(x^2-100)/x^2 - 100 <0
<=> 1000/x^2-100 <0
<=> x^2 - 100 <0
<=> x^2 <100
<=> 0 <x <10
=> x nguyên dương => x= 1,2,3,...,9
=> tổng các nghiệm nguyên dương của bpt là 1+2+3+...+9=9.10/2 = 45