Cho ( a , b ∈ N * , ( a , b ) = 1 ; n ∈ a b + 1 , a b + 2 .
Kí hiệu r n là số cặp số ( u , v ) ∈ N * × N *
sao cho n = a u + b v . Tìm lim n → ∞ r n n = 1 a b .
Cho a>b>0, n thuộc N*. So sanh:
A=(1+a+a^2 + ....+ a^(n-1))/(1+a+a^2+....+a^n)
B=(1+b+b^2+....+b^(n-1))/(1+b+b^2+......+b^n)
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
a, Cho a,b,n thuộc N*. Hãy so sánh a+n/b+n và a/b
b, Cho A= 10^11-1/10^12-1; B = 10^10+1/10^11+1
a) cho a/b < 1 ( a,b thuộc N b khác 0)
CM a/b < a+n/b+n (n thuộc Z)
Vận dụng so sánh:
A= 15^18+1/15^17+1 và B= 15^17+1/15^18+1
b) cho a/b > 1 ( a,b thuộc N b khác 0)
CM a/b >a+n/b+n (n thuộc Z)
Vận dụng so sánh:
C= 100^90+1/100^89+1 và D= 100^89+1/100^88+1
Cho 1/a + 1/b + 1/c = 1/(a+b+c). Chứng minh 1/a^n + 1/b^n + 1/c^n = 1(a^n+b^n+c^n).
cho tam giac ABC can tai A trung tuyen AM goi D la diem doi xung cua A qua M va K la trung diem cua MC E la diem doi xung cua Dqua K
a) chung minh tu giac ABCD la hinh thoi
b)chung minh tu giac AMCE la hinh chu nhat
c)AM va BE cat nhau tai I chung minh I la trung diem cua BE
d)chung minh AK,CI,EM dong quy
Cho ba tập hợp : A = { -3; -2; -1; 0; 1} , B = { -1; 0; 1; 2; 3 } , C = { -3; -2; -1; 0; 1; 2 ;3 }.
a) Tìm A ∪ B ; A ∩ B ; A ∪ C ; A ∩ C ; B ∪ C .
b) Tìm A ∩ N ; B ∩ N ; A ∪ N ; B ∪ N ; ( A ∩ B ) ∩ N ; ( A ∩ B ) ∩ Z .
Giải nhanh giúp mình với ạ
1. Cho n thuộc N . Tìm ƯCLN của
a, 2 số tự nhiên liên tiếp
b, 2n+1 và 3n+1
c, 2n+1 và 6n+5
d, 20n+1 và 15n+2
2. Tìm a,b thuộc N biết a.b =864 và ƯCLN (a,b)=60
3. Tìm n thuộc N để
a, 16-2n chia hết cho n-2
b, 5n-8 chia hết cho 4-n
4.Tìm a,b thuộc N biết a+b=66 , ƯCLN ( a,b ) =6 và 1 trong 2 số đó chia hết cho 5.
5. Biết a,b thuộc N , ƯCLN (a,b) =4 , a=8. Tìm b ( với a < b )
6.Cho a<b , a và b thuộc N ; ƯCLN (a,b) =16 và b =96 .Tìm a.
a,Cho a,b,n thuộc N*.Hãy so sánh a+n/b+n và a/b
b,Cho A = 10^11-1/10^12-1
B = 10^10+1/10^11+1
so sánh A và B
Cho 1/a + 1/b + 1/c = 1/(a+b+c). chứng minh 1/a^n + 1/b^n + 1/c^n = 1(a^n+b^n+c^n). Mọi người giúp mình với ạ
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b\right)+c^2\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Suy ra:
Trong 3 số a,b,c có 2 số đối nhau. Không mất tính tổng quát, giả sử a=-b
Thay vào ta dễ thấy:
\(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\left(=\dfrac{1}{c^n}\right)\) (ĐPCM)
Cho 1/a + 1/b + 1/c = 1/(a+b+c). CMR: Với n thuộc Z, ta có: 1/a^n + 1/b^n + 1/c^n = 1/(a^n + b^n + c^n)?