Đường thẳng có hệ số góc , đi qua giao điểm của và có dạng
Phương trình đường thẳng cần tìm có hệ số góc là \(-\frac{1}{2}\)nên có dạng \(y=-\frac{1}{2}x+a\)
Phương trình hoành độ giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là: \(x+3=2x-1\)\(\Leftrightarrow x=4\)
\(\Rightarrow y=x+3=4+3=7\)
Vậy giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là điểm \(\left(4;7\right)\)
Mà \(\left(d\right):y=-\frac{1}{2}x+a\)đi qua điểm \(\left(4;7\right)\)nên ta thay \(x=4;y=7\)vào hàm số, ta có:
\(7=-\frac{1}{2}.4+a\)\(\Leftrightarrow a=9\)
Vậy phương trình đường thẳng cần tìm là \(\left(d\right):y=-\frac{1}{2}x+9\)
Vì (d) có hệ số góc bằng -1/2 nên a=-1/2
Vậy: (d): y=-1/2x+b
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Thay x=4 và y=7 vào (d), ta được: b-2=7
hay b=9
Viết phương trình đường thẳng d có hệ số góc bằng - 1/2 và đi qua giao điểm của hai đường thẳng (d1): y= x + 3 và (d2): y= 2x -1
Viết phương trình đường thẳng (d) có hệ số góc bằng -1/2 và đi qua giao điểm của hai đường thằng (d1): y = x + 3; (d2): y = 2x - 1
Tìm hệ số góc của đường thường `y=ax+b`, biết
Đường thẳng `y=ax+b` đi qua `P(-1;-3)` và đi qua giao điểm của hai đường thẳng `y=x-7;y=-4x+3`
Tọa độ giao điểm của hai đường thẳng y=x-7 và y=-4x+3 là:
\(\left\{{}\begin{matrix}x-7=-4x+3\\y=x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+4x=7+3\\y=x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=10\\y=x-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2-7=-5\end{matrix}\right.\)
Thay x=2 và y=-5 vào y=ax+b, ta được:
a*2+b=-5
=>2a+b=-5(1)
thay x=-1 và y=-3 vào y=ax+b, ta được:
a*(-1)+b=-3
=>-a+b=-3(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=-5\\-a+b=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a=-2\\a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=a-3=-\dfrac{2}{3}-3=-\dfrac{11}{3}\end{matrix}\right.\)
Vậy: (d): \(y=-\dfrac{2}{3}x-\dfrac{11}{3}\)
Trong mặt phẳng tọa độ Oxy cho điểm A(1 ;1)và điểm B(-2;-7).
a/ Viết phương trình đường thẳng (d) đi qua góc tọa đọ và có hệ số góc bằng 1
b/Tìm tọa độ giao điểm của đường thẳng (d) và đường thẳng AB
c/ Vẽ đường thẳng (d) và đướng thẳng AB
Trong mặt phẳng 0xy cho A(-1;2)
a)Viết phương trình đường thẳng (d) đi qua A và có hệ số góc là -3. Vẽ (d)
b)Viết phương trình đường thẳng (d1) đi qua M( 2;3) và N(4;5)
c)Tìm tọa độ giao điểm (d) và (d1)
a: Vì (d) có hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
Thay x=-1 và y=2 vào (d), ta được:
b+3=2
hay b=-1
\(a,\) Gọi \(\left(d\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=2\\a=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-1\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x-1\)
\(b,\) Gọi \(\left(d_1\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=x+1\)
\(c,PTHDGD:-3x-1=x+1\Leftrightarrow x=-\dfrac{1}{2}\Leftrightarrow y=\dfrac{1}{2}\Leftrightarrow B\left(-\dfrac{1}{2};\dfrac{1}{2}\right)\\ \text{Vậy }B\left(-\dfrac{1}{2};\dfrac{1}{2}\right)\text{ là giao 2 đths}\)
tìm hệ số góc của đường thẳng (d4) : y=ax+5 biết (d4) đi qua giao điểm của (d1) và (d2)
Cho d1:y=2x+1; d2:y=x+1; d3:y=(m+1)x+2m-1
a)Xác định tọa độ giao điểm A của d1 và d2 bằng phép tính
b)Lập phương trình đường thẳng d4 đi qua điểm A có hệ số góc là -4
c)Lập phương trình đường thẳng d5 đi qua điểm A song song đường thẳng d6:y=0,5x+9
d)Tìm m để 3 đường thẳng d1;d2;d3 đồng quy
a: Phương trình hoành độ giao điểm là:
2x+1=x+1
=>2x-x=1-1
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
=>A(0;1)
b: Vì (d4) có hệ số góc là -4 nên (d4): y=-4x+b
Thay x=0 và y=1 vào (d4), ta được:
b-4*0=1
=>b=1
=>y=-4x+1
c: Vì (d5)//(d6) nên (d5): y=0,5x+a
Thay x=0 và y=1 vào (d5), ta được:
a+0,5*0=1
=>a=1
=>y=0,5x+1
d: Thay x=0 và y=1 vào (d3), ta được:
0*(m+1)+2m-1=1
=>2m-1=1
=>2m=2
=>m=1
Phương trình tham số của đường thẳng ∆ đi qua điểm M(2; 3) và có hệ số góc k = 4 là:
A.y = 4(x – 2) + 3
B. 4x – y – 5 = 0
C. x = 2 + t y = 3 + 4 t , t ∈ R
D. x = 2 + 2 t y = 3 + t , t ∈ R
Hướng dẫn:
Đường thẳng ∆ có hệ số góc k = 4 nên có vectơ chỉ phương u → = 1 ; 4 . Do đó C là phương án đúng.
Chú ý. Học sinh có thể nhầm sang các loại phương trình khác của đường thẳng như các phương án ở A và B. Đây đều là phương trình của đường thẳng nhưng không là phương trình tham số.