Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=x3+mx2-x+m nghịch biến trên khoảng (1;2).
Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=x3+mx2-x+m nghịch biến trên khoảng (1;2).
Tập hợp tất cả các giá trị của tham số m để hàm số y = x 3 − m x 2 − m − 6 x + 1 đồng biến trên khoảng (0;4)
A. − ∞ ; 6
B. − ∞ ; 3
C. − ∞ ; 3
D. [3;6]
Tập hợp tất cả các giá trị thực của tham số m để hàm số y = - x 3 - 6 x 2 + ( 4 m - 9 ) x + 4 nghịch biến trên khoảng - ∞ ; - 1 là
A. ( - ∞ ; 0 ]
B. [ - 3 4 ; + ∞ )
C. ( - ∞ ; - 3 4 ]
D. [ 0 ; + ∞ )
Tập hợp tất cả các giá trị thực của tham số m để hàm số y = - x 3 - 6 x 2 + ( 4 m + 9 ) x + 4 nghịch biến trên khoảng (- ∞ ; 1) là
A. (- ∞ ; 0]
B. [- 3 4 ;+ ∞ )
C. (- ∞ ;- 3 4 ]
D. (0;+ ∞ ]
Đáp án C
Phương pháp:
Hàm số y = f(x) nghịch biến trên D khi và chỉ khi và bằng 0 tại hữu hạn điểm
Cách giải:
Ta có:
Hàm số đã cho nghịch biến trên
Xét hàm số: ta có:
Tìm tập hợp tất cả các tham số m để hàm số y = x 3 – m x 2 + ( m – 1 ) x + 1 đồng biến trên khoảng (1; 2)
A. m ≤ 11 3
B. m < 11 3
C. m ≤ 2
D. m < 2
Tập hợp tất cả các giá trị thực của tham số m để hàm số y = - x 3 - 6 x 2 + 4 m - 9 x + 4 nghịch biến trên khoảng - ∞ ; - 1 là
A. ( - ∞ ; 0 ]
B. [ - 3 4 ; + ∞ )
C. ( - ∞ ; - 3 4 ]
D. [ 0 ; + ∞ )
Chọn đáp án D.
Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)
thì phương trình f t = m có nghiệm t ∈ ( 0 ; 1 ]
Quan sát đồ thị thấy phương trình f t = m có nghiệm t ∈ ( 0 ; 1 ] khi - 1 ≤ m < 1
Tập hợp tất cả các giá trị thực của tham số m để hàm số y = - x 3 - 6 x 2 + 4 m - 9 x + 4 nghịch biến trên khoảng (-¥ -; 1) là
A. ( - ∞ ; 0 ]
B. [ - 3 4 ; + ∞ )
C. ( - ∞ ; - 3 4 ]
D. [ 0 ; + ∞ )
Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số y = 1 3 x 3 + m x 2 + 4 x - m đồng biến trên khoảng ( - ∞ ; + ∞ )
A. - ∞ ; - 2 x
B. [ 2 ; + ∞ )
C. [-2;2]
D. ( - ∞ ; 2 )
Tìm tất cả các giá trị thực của tham số m để hàm số y = - x 3 + 2 x 2 - ( m - 1 ) x + 2 nghịch biến trên khoảng (-∞;+∞)
A. m ≤ 7 3
B. m ≥ 7 3
C. m ≥ 1 3
D. m > 7 3
Đáp án B
Phương pháp:
Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.
Cách giải:
Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)