Biết rằng tổng S = 1 1 ! 2019 ! + 1 3 ! 2017 ! + 1 5 ! 2015 ! + . . . + 1 2019 ! 1 ! có thể viết dưới dạng 2 a b ! với a, b là số nguyên dương. Tính S = a + 2b
A. S = 6058
B. S = 6059
C. S = 6056
D. S = 6057
a) Tìm tất cả các STN n biết rằng n + S ( n ) =2019 , trong đó S ( n ) là tổng chữ số của n .
b) Tìm STN n để ( n +3 ) (n +1) là số nguyên tố
cho tổng S= 3/4+8/9+15/16+....+2019^2-1/2019^2
chứng minh rằng S không hải là số nguyên
giúp mk vs mk cần gấp
Biết rằng phương trình 2018 x 2 - 12 x + 1 = 2019 có hai nghiệm phân biệt x 1 , x 2 . Tổng x 1 + x 2 bằng
A. -1
B. 12
C. 2 log 2018 2019
D. 2018
Ta có 2018 x 2 - 12 x + 1 = 2019
Chọn B.
Bài 6 :
a) Tính tổng : S = 1 + 3 + 5 + 7 + ... + 2017 + 2019
b) Tìm a ϵ N , biết rằng a chia cho 3 được thương là 10
c) Chứng minh rằng ab + ba chia hết cho 11
| ghi rõ lời giải hộ iem luôn ạ , 4 ng trl trc em cho tick |
a: Số số hạng là:
(2019-1):2+1=1010(số)
Tổng là:
\(\dfrac{2020\cdot1010}{2}=1020100\)
Biết n! = 1.2.3...n (Ví dụ: 3! = 1.2.3 = 6). chứng tỏ rằng S =\(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}< 2\)
Ta có: \(S=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}=1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}\)
Đặt \(M=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2019!}\)
\(\Rightarrow M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow M< 1-\frac{1}{2019}=\frac{2019}{2019}-\frac{1}{2019}=\frac{2018}{2019}\)
\(\Rightarrow S< 1+\frac{2018}{2019}=\frac{2019}{2019}+\frac{2018}{2019}=\frac{4037}{2019}< 2\)
\(\Rightarrow S< 2\) ( ĐPCM )
Rút gọn tổng \(S=C\overset{1}{2019}-2C\overset{2}{2019}+...-2018C\overset{2018}{2019}+2019C\overset{2019}{2019}\) bằng:
A. 2019
B.1
C. -2019
D. 0
Cho s=1/1×2+1/2×3+1/3×4+1/4×5+...1/2019×2020 chứng tỏ rằng s
Rút gọn tổng: \(S=-C\overset{1}{2019}+1.2C\overset{2}{2019}-2.3C\overset{3}{2019}+...+2017.2018C\overset{2018}{2019}-2018.2019C\overset{2019}{2019}\) bằng:
A. 1
B.. 2019
C. 0
D. -2019
tính tổng S= (1/2018!)+(1/3!2016!)+(1/5!2014!)+...+(1/2017!2!)+(1/2019!)
\(S=\dfrac{1}{2018!\left(2019-2018\right)!}+\dfrac{1}{2016!\left(2019-2016\right)!}+...+\dfrac{1}{2!\left(2019-2\right)!}+\dfrac{1}{0!\left(2019-0!\right)}\)
\(\Rightarrow2019!.S=\dfrac{2019!}{2018!\left(2019-2018\right)!}+\dfrac{2019!}{2016!\left(2019-2016\right)!}+...+\dfrac{2019!}{2!\left(2019-2\right)!}+\dfrac{2019!}{0!\left(2019-0\right)!}\)
\(=C_{2019}^{2018}+C_{2019}^{2016}+...+C_{2019}^2+C_{2019}^0\)
\(=\dfrac{1}{2}\left(C_{2019}^0+C_{2019}^1+...+C_{2019}^{2018}+C_{2019}^{2019}\right)\)
\(=\dfrac{1}{2}.2^{2019}=2^{2018}\)
\(\Rightarrow S=\dfrac{2^{2018}}{2019!}\)