d 1 : x - 2 1 = y - 1 - 2 = z - 3 - 1 , d 2 : x = - 3 - t y = 6 + t z = - 3
Mệnh đề nào sau đây đúng?
A. d 1 và d 2 chéo nhau
B. d 1 và d 2 cắt nhau
C. d 1 và d 2 trùng nhau
D. d 1 song song với d 2
1. Cho d: y = (\(^{m^2}\) + 2m)x + m + 1 . Tìm m để:
a, d // d1: y = (m + 6)x - 2
b, d ⊥ d2: y = \(\dfrac{-1}{3}\)x - 3
c, d ≡ d3: y = -\(^{m^2}\).x + 1
2. Tìm d // d1: y = \(\dfrac{-1}{2}\)x + 1 và d đi qua giao điểm của d1: y = 4x - 3 và d2: y = -x + 1
Bài 1:
b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)
Kết quả của phép nhân \((x + y - 1)(x + y + 1)\) là:
A. \({x^2} - 2xy + {y^2} + 1\)
B. \({x^2} + 2xy + {y^2} - 1\)
C. \({x^2} - 2xy + {y^2} - 1\)
D. \({x^2} + 2xy + {y^2} + 1\)
\(\left(x+y-1\right)\left(x+y+1\right)=x^2+xy-x+xy+y^2-y+x+y-1\\ =x^2+\left(xy+xy\right)+\left(-x+x\right)+y^2+\left(-y+y\right)-1\\ =x^2+2xy+y^2-1\\ =>B\)
GIẢI HỆ PHƯƠNG TRÌNH:(đặt ẩn phụ)
a) 1/x -1/y-2 =-1
4/x + 3/y-2 =5
b)2/x +5/(x+y) =2
3/x +1/(x+y) =17/10
c) 2/(x-1) +1 /(y+1) =7
5/(x-1) - 2/(y-1) =4
d) 2/ (căn x-1) -1/ (căn y-1) =1
1/ (căn x-1) +1 / (căn y-1) =2
\(a.\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}-2=-1\\\dfrac{4}{x}+\dfrac{3}{y}-2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a-b-2=-1\\4a+3b-2=5\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{10}{7}\\b=\dfrac{3}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{10}{7}\Rightarrow x=\dfrac{7}{10}\\\dfrac{1}{y}=\dfrac{3}{7}\Rightarrow y=\dfrac{7}{3}\end{matrix}\right.\)
\(b.\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{5}{\left(x+y\right)}=2\\\dfrac{3}{x}+\dfrac{1}{\left(x+y\right)}=\dfrac{17}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a+5b=2\\3a+b=\dfrac{17}{10}\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{x+y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\\\dfrac{1}{x+y}=\dfrac{1}{5}\Rightarrow y=3\end{matrix}\right.\)
\(c.\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{y+1}=7\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=7\\5a-2b=4\end{matrix}\right.\) (với \(\dfrac{1}{x-1}=a-\dfrac{1}{y+1}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=2\Rightarrow x=\dfrac{3}{2}\\\dfrac{1}{y+1}=3\Rightarrow y=-\dfrac{2}{3}\end{matrix}\right.\)
\(d.\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-1}}=1\\\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{y-1}}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\) (với \(\dfrac{1}{\sqrt{x-1}}=a-\dfrac{1}{\sqrt{y-1}}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}=1\Rightarrow x=2\\\dfrac{1}{\sqrt{y-1}}=1\Rightarrow y=2\end{matrix}\right.\)
Bài 1: cho dãy tỉ số bằng nhau: a/b+c+d = b/a+c+d = c/a+b+d = d/a+b+c Tính B= a+b/c+d + b+c/a+d + c+d/a+ + d+a/b+c Bài 2: tìm x,y,z biết: y+2+1/x = x+y+2/y = x+y.3/z = 1/x+y+z
Cho đường thẳng d x+1/2=y-1/1=z/-1 d' x-1/-2=y+1/3=z-2/1 Và mp 2x+y-2z+5 =0. Viết pt đường thẳng đenta nằm trong mp cắt tất cả d và d'
c, d ≡ d3: y = \(-m^2\).x + 1
2. Tìm d // d1: y = \(\dfrac{-1}{2}\)x + 1 và d đi qua giao điểm của d1: y = 4x - 3 và d2: y = -x + 1
2, Gọi \(\left(d\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
PTHDGD d1 và d2 là \(4x-3=-x+1\Leftrightarrow x=\dfrac{4}{5}\Leftrightarrow y=\dfrac{1}{5}\Leftrightarrow A\left(\dfrac{4}{5};\dfrac{1}{5}\right)\)
Vì \(\left(d\right)//\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b\ne1\end{matrix}\right.\Leftrightarrow\left(d\right):y=-\dfrac{1}{2}x+b\)
Vì \(A\left(\dfrac{4}{5};\dfrac{1}{5}\right)\in\left(d\right)\Leftrightarrow-\dfrac{1}{2}\cdot\dfrac{4}{5}+b=\dfrac{1}{5}\Leftrightarrow b=\dfrac{3}{5}\)
Vậy đt cần tìm là \(\left(d\right):y=-\dfrac{1}{2}x+\dfrac{3}{5}\)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b: \(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
d: \(=9x^2+6x+1-9x^2+6x-1=12x\)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
e: \(=x^3+1-x^3+1=2\)
Rút gọn biểu thức
a) A= 39(x-y)^2-2(x+y)^2-(x-y)(x+y)
b) B= (x-1)^2-2(x-1)(x-3)+(x-3)^2
c) C= (2x+3)^2+(2x+3)(2x-6)+(x-3)^2
d) D= (x^2+x+1)(x^2-x+1)(x^4-x^2+1)(x^8-x^4+1)
Trắc nghiệm chọn đáp án đúng
1) điều kiệm để biểu thức 2 phần x-1 là một phân thức
A)x#1 ;b) x=1; c) x#0 ; d) x=0
2) phân thức bằng với phân thức 1-x phần y-x là:
A) x-1 phần y-x ; b) 1-x phần x-y ; c) x-1 phần x-y ; d) y-x phần 1-x
3) kết quả rút gọn của phân thức 2xy(x-y)^2 phần x-y bằng:
a) 2xy^2 ;b) 2xy(x-y) ; c) 2(x-y)^2; d) (2xy)^2
4) hai phân thức 1 phần 4x^2 y và 5 phần 6xy^3 z có mẫu thức chung đơn giản nhất là:
a) 8x^2 y^3 z ; b) 12 x^3 y^3 z ; c) 24 x^2 y^3 z ; d) 12 x^2 y^3 z
5) phân thức đối của phân thức 3x phần x+y là:
A) 3x phần x-y ;b) x+y phần 3x ;c) -3x phần x+y ;d) -3x phần x-y
6) phân thức nghịch đảo của phân thức -3y^2 phần 2x là:
A) 3y^2 phần 2x ; b) -2x^2 phần 3y ; c) -2x phần 3y^2 ; d) 2x phần 3y^2