Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Thùy Linh
3 tháng 10 2021 lúc 19:22

2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0

Thuy Tram
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 12 2020 lúc 16:53

ĐKXĐ: \(sinx\ne\pm1\)

\(\dfrac{3cos2x-2sinx+5}{2\left(1-sin^2x\right)}=0\)

\(\Leftrightarrow3\left(1-2sin^2x\right)-2sinx+5=0\)

\(\Leftrightarrow-6sin^2x-2sinx+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(loại\right)\\sinx=-\dfrac{4}{3}< -1\left(loại\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

Kinder
Xem chi tiết
迪丽热巴·迪力木拉提
28 tháng 5 2021 lúc 15:48

a/ \(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-cos2x}{2}\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-2cos^2x+1}{2}=\dfrac{2-2cos^2x}{2}=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1-cosx\right)\left(1+cosx\right)=0\)\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-cosx-1+cosx\right)=0\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\\2sinx-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=180^o\\x=30^o\end{matrix}\right.\)

 

 

Lê Thị Thục Hiền
28 tháng 5 2021 lúc 16:16

a) Đáp án: \(\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) \(3sin^2x+7cos2x-3=0\)

\(\Leftrightarrow3sin^2x+7\left(1-2sin^2x\right)-3=0\)

\(\Leftrightarrow11.sin^2x=4\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{2\sqrt{11}}{11}\\sinx=\dfrac{-2\sqrt{11}}{11}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\end{matrix}\right.\) (\(k\in Z\)) (Dị quá,câu này e ko biết đ/a đúng hay sai đâu)

Vậy...

c)\(\dfrac{4.sin^2x+6.sin^2x-9-3.cos2x}{cosx}=0\) (đk: \(x\ne\dfrac{\pi}{2}+k\pi\),\(k\in Z\))

\(\Rightarrow10sin^2x-9-3\left(1-2.sin^2x\right)=0\)

\(\Leftrightarrow sin^2x=\dfrac{3}{4}\)\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{\sqrt{3}}{2}\\sinx=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)(\(k\in Z\)) (Thỏa mãn đk)

Vậy...

迪丽热巴·迪力木拉提
28 tháng 5 2021 lúc 15:55

b/\(3sin^2x+7cos2x-3=0\Leftrightarrow3sin^2x+7\left(2cos^2x-1\right)-3=0\Leftrightarrow3sin^2x+14cos^2x-7-3=0\)\(\Leftrightarrow3sin^2x+3cos^2x+11cos^2x-10=0\Leftrightarrow3+11cos^2x-10=0\Leftrightarrow11cos^2x-7=0\)\(\Leftrightarrow cos^2x=\dfrac{7}{11}\Leftrightarrow cosx=\sqrt{\dfrac{7}{11}}\)\(\Leftrightarrow x=37^o5'\) 

Ủa sao kết quả xấu vậy:vvv Chắc sai đâu rồi:vv

lu nguyễn
Xem chi tiết
Trần
Xem chi tiết
Nguyễn Phương HÀ
15 tháng 8 2016 lúc 8:24

Hỏi đáp Toán

Yuri
Xem chi tiết
Minhmetmoi
1 tháng 10 2021 lúc 12:22

a

\(\Leftrightarrow\left(3sinx-sin3x\right)cos3x+\left(3cosx+cos3x\right)sin3x+3\sqrt{3}cos4x=3\)

\(\Leftrightarrow\left(sinx.cos3x+sin3x.cosx\right)+\sqrt{3}cos4x=1\)

\(\Leftrightarrow sin4x+\sqrt{3}cos4x=1\)

Tới đây thôi, mình lười ghi rồi =))

b

\(\Leftrightarrow\left(1-cos2x\right)\left(2sin^2x-1\right)\left(2sin^2+1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)

\(\Leftrightarrow\left(1-cos2x\right)\left(-cos2x\right)\left(2-cos2x\right)=cos2x\left(7cos^22x+3cos2x+4\right)\)

\(\Leftrightarrow-cos^22x+3cos2x-2=7cos^22x+3cos2x+4\)

\(\Leftrightarrow4cos^22x+3=0\)

=> pt vô nghiệm

Thuy Luong
Xem chi tiết
Mysterious Person
30 tháng 8 2018 lúc 17:30

a) ta có : \(2sin^2x+3cos2x=0\Leftrightarrow2sin^2x+3\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow3-4sin^2x=0\Leftrightarrow sin^2x=\dfrac{3}{4}\Leftrightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

th1 : \(sinx=\dfrac{\sqrt{3}}{2}\Leftrightarrow sinx=sin\dfrac{\pi}{3}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

th2 : \(sinx=\dfrac{-\sqrt{3}}{2}\Leftrightarrow sinx=sin\left(\dfrac{-\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

vậy phương trình có 4 hệ nghiệm : \(x=\dfrac{\pi}{3}+k2\pi;x=\dfrac{2\pi}{3}+k2\pi;x=\dfrac{-\pi}{3}+k2\pi;x=\dfrac{4\pi}{3}+k2\pi\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2020 lúc 21:37

a/

\(\Leftrightarrow2cos^22x+2cos^2x-1=0\)

\(\Leftrightarrow2cos^22x+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 21:39

b/

\(\Leftrightarrow2cos^2x-1+1-cos^2x-2cosx+1=0\)

\(\Leftrightarrow cos^2x-2cosx+1=0\)

\(\Leftrightarrow\left(cosx-1\right)^2=0\)

\(\Rightarrow cosx=1\Rightarrow x=k2\pi\)

c/

\(4\left(1+tan^2x\right)+tanx-7=0\)

\(\Leftrightarrow4tan^2x+tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{3}{4}\right)+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 21:43

d/

\(\Leftrightarrow3\left(1-cos2x\right)-2\left(1-cos^22x\right)=5\)

\(\Leftrightarrow2cos^22x-3cos2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{3+\sqrt{41}}{4}\left(l\right)\\cos2x=\frac{3-\sqrt{41}}{4}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{1}{2}arccos\left(\frac{3-\sqrt{41}}{4}\right)+k\pi\)

Nghiệm xấu quá :(