Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng qua A(1;2;-1) có một vecto pháp tuyến n → 2 ; 0 ; 0 có phương tình là
A. y + z = 0
B. y + z - 1 = 0
C. x - 1 = 0
D. 2 x - 1 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A 4 ; 1 ; − 2 . Tọa độ điểm đối xứng với A qua mặt phẳng O x z là
A. A ' 4 ; − 1 ; 2
B. A ' − 4 ; − 1 ; 2
C. A ' 4 ; − 1 ; − 2
D. A ' 4 ; 1 ; 2
Đáp án C.
Gọi điểm H là hình chiếu của A 4 ; 1 ; − 2 trên mặt phẳng O x z , khi đó H 4 ; 0 ; − 2 .
Điểm A' đối xứng với A 4 ; 1 ; − 2 qua mặt phẳng O x z nên H 4 ; 0 ; − 2 là trung điểm AA' . Khi đó A ' 2 x H − x A ; 2 y H − y A ; 2 z H − z A → A ' 4 ; − 1 ; − 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;1;-2) Tọa độ điểm đối xứng với A qua mặt phẳng (Oxz) là:
A. A'(4;-1;2)
B. A'(-4;-1;2)
C. A'(4;-1;-2)
D. A'(4;1;2)
cho mình hỏi vs
câu 1 trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (A) đi qua hai điểm A( 2;-1;0) và có vecto pháp tuyến n (3:5:4)viết phương trình mặt cầu
câu 2 trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có tâm I(2;-3:7) và đi qua điểm M(-4:0;1) viết phương trình mặt cầu
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua các hình chiếu của điểm A(1 ;2 ;3) trên các trục tọa độ là:
Đáp án C.
Hình chiếu của A(1 ;2 ;3) lên trục Ox là M(1;0;0)
Hình chiếu của A(1 ;2 ;3) lên trục Oy là N(0;2;0)
Hình chiếu của A(1 ;2 ;3) lên trục Ox là P(0;0;3)
Phương trình mặt phẳng (P) cần tìm là:
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua các hình chiếu của điểm A(1;2;3) trên các trục tọa độ là:
A. x + 2y + 3z = 0
B. x + y 2 + z 3 = 0
C. x + y 2 + z 3 = 1
D. x + 2y + 3z = 1
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng qua A(1;2;-1) có một véc-tơ pháp tuyến = (2;0;0) có phương trình là:
A. y + z = 0
B. y + z - 1 = 0
C. x - 1 = 0
D. 2x - 1 = 0.
Đáp án C
Mặt phẳng qua A(1;2;-1) có pháp véc-tơ = (2;0;0) có dạng 2(x-1) = 0 <=> x -1 = 0
Trong không gian với hệ tọa độ Oxyz cho điểm Phương trình mặt phẳng ( Q ) đi qua các hình chiếu của điểm A lên các trục tọa độ là
A . ( Q ) : x - y + 2 z - 2 = 0
B . ( Q ) : 2 x - 2 y + z - 2 = 0
C . ( Q ) : x - 1 + y 1 + z - 2 = 1
D . ( Q ) : x - y + 2 z + 6 = 0
Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua A(1;1;3) và chứa trục hoành có phương trình là:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( P ) : x + y – z – 4 = 0 và điểm M (1;–2;-2). Tọa độ điểm N đối xứng với điểm M qua mặt phẳng (P) là
A. N (3;4;8)
B. N (3;0;–4)
C. N (3;0;8)
D. N (3;4;–4)