Từ điểm M nằm ngoài mặt cầu S O ; R có thể kẻ được bao nhiêu tiếp tuyến với mặt cầu ?
A. Vô số
B. 0
C. 1
D. 2
Từ điểm M nằm ngoài mặt cầu S(O;R) có thể kẻ được bao nhiêu tiếp tuyến với mặt cầu?
A. 0 B. 1
C. 2 D. Vô số
Chọn D.
(h.12) Gọi ( α ) là mặt phẳng chứa đường thẳng MO
Ta có: ( α ) cắt mặt cầu S(O;R) theo giao tuyến là đường tròn (C) có tâm O, bán kính R.
Trong mặt phẳng ( α ), từ điểm M nằm ngoài (C) ta luôn kẻ được hai tiếp tuyến M T 1 , M T 2 với đường tròn (C). Đây cũng là hai tiếp tuyến với mặt cầu S(O;R).
Nhận xét: Do có vô số mặt phẳng ( α ) chứa đường thẳng MO. Những mặt phẳng này cắt mặt cầu S(O;R) theo các giao tuyến là đường tròn khác nhau nên cũng có vô số tiếp tuyến với mặt cầu được kẻ từ điểm M nằm ngoài mặt cầu.
Từ một điểm M nằm ngoài mặt cầu (O; R), vẽ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D.
Chứng minh rằng MA.MB = MC.MD
Hai đường thẳng MAB và MCD giao nhau xác định một mặt phẳng (P). Mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn (C), ngoại tiếp tứ giác phẳng ABCD.
Xét ΔMAC và ΔMDB có:
⇒ MA.MB = MC.MD (đpcm).
Cho mặt cầu S tâm O bán kính 3cm. Điểm A nằm ngoài mặt cầu và cách O một khoảng bằng 5cm. Đường thẳng AB tiếp xúc với mặt cầu, B là tiếp điểm. Độ dài đoạn thẳng AB là
A. 4 cm
B. 5 cm
C.. 3 cm
D. 2 3 cm
Cho mặt cầu (S) tâm (O) bán kính 3cm. Điểm A nằm ngoài mặt cầu và cách O một khoảng bằng 5cm. Đường thẳng AB tiếp xúc với mặt cầu, B là tiếp điểm. Độ dài đoạn thẳng AB là
A. 5cm.
B. 4cm.
C. 3cm.
D. 2 3 cm.
Trong không gian Oxyz, cho mặt cầu S : x 2 + y 2 + x + 2 2 = 16 và điểm A(m;m;2) nằm ngoài mặt cầu. Từ A kẻ các tiếp tuyến đến mặt cầu (S), gọi P m là mặt phẳng chứa các tiếp điểm, biết P m luôn đi qua một đường thẳng d cố định, phương trình đường thẳng d là:
A.
B.
C.
D. .
Cho mặt cầu (S) có tâm O và bán kính R biết diện tích của (S) là 36π. Điểm A nằm ngoài (S) sao cho OA=5. Tiếp tuyến kẻ từ A tới (S) có tiếp điểm là B. Độ dài AB là
\(S=4\pi R^2=36\pi\Rightarrow R=3\)
\(\Rightarrow OB=R=3\)
Áp dụng định lý Pitago cho tam giác OAB:
\(AB=\sqrt{OA^2-OB^2}=\sqrt{5^2-3^2}=4\)
Từ một điểm M nằm ngoài mặt cầu \(S\left(O;r\right)\) ta kẻ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D
a) Chứng minh rằng MA.MB=MC.MD
b) Gọi MO = d. Tính MA.MB theo r và d
a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).
Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.
Vì vậy: => MA.MB = MC.MD.
b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:
MO2= MI2 = OI2 và OA2 = OI2 + IA2
Hạ IH vuông góc AB, ta có H là trung điểm của AB.
Ta có MA = MH - HA; MB = MH + HB = MH + HA.
Nên MA.MB =
MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)
= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)
= MO2 – OẢ2
= d2 – r2
Vậy MA.MB = d2 – r2
Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho AB = AC = 6, BC = 8. Khoảng cách từ O đến mặt phẳng (ABC) bằng 2. Thể tích khối cầu (S) bằng
A. 404 π 5
B. 2916 π 5 75 .
C. 404 π 505 75
D. 324 π 5
Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho A B = 3 , A C = 4 , B C = 5 và khoảng cách từ O đến mặt phẳng (ABC) bằng 1. Thể tích của khối cầu (S) bằng
A. 7 21 π 2
B. 13 13 π 6
C. 20 5 π 3
D. 29 29 π 6