Tìm tất cả các giá trị a để phương trình y = f'(x) có nghiệm f(x) = acosx+ 5 sinx-3x+1
Tìm tất cả các giá trị của a để phương trình y = f ' ( x ) có nghiệm biết rằng f x = a cos x + 5 sin x - 3 x + 1 .
A. -2 < a < 2
B. a ≤ - 2 h o ặ c a ≥ 2
C. - 2 ≤ a ≤ 2
D. a < -2 hoặc a > 2
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(f(sinx))=m có nghiệm thuộc khoảng 0 ; π là
A. [-1;3)
B. (-1;1)
C. (-1;3]
D. [-1;1)
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Tập hợp tất cả các giá trị thực của tham số m để phương trình f (sinx) = m có nghiệm thuộc khoảng (0; π ) là
A. [-1;3)
B. (-1;1)
C. (-1;3)
D. [-1;1 )
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(sinx)=m có nghiệm thuộc khoảng 0 ; π là
A. (-1;3)
B. (-1;1)
C. (-1;3)
D. (-1;1)
Cho đồ thị hàm số y=f(x) như hình vẽ. Tìm tất cả các giá trị thực m để phương trình f(x) +1=m có ba nghiệm phân biệt
Cho đồ thị hàm số y=f (x) như hình vẽ. Tìm tất cả các giá trị thực m để phương trình f(x) +1= m có ba nghiệm phân biệt
A. 0 < m < 5
B. 1 < m < 5
C. - 1 < m < 4
D. 0 < m < 4
Bất phương trình y = f ( x ) có tập nghiệm là (a;b)
Tập tất cả các giá trị của tham số m để phương trình f ( x ) = m có ba nghiệm phân biệt là
A. ( 4 ; + ∞ ) .
B. ( − ∞ ; − 2 ) .
C. [ − 2 ; 4 ] .
D. ( − 2 ; 4 ) .
Chọn đáp án D
Số nghiệm của phương trình f ( x ) = m bằng
số giao điểm của đồ thị hàm số y = f ( x ) với
đường thẳng y = m
Từ bảng biến thiên suy ra phương trình có 3 nghiệm phân biệt khi − 2 < m < 4.
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Tìm tất cả các giá trị của để phương trình f(x)=m có 3 nghiệm phân biệt
A. − 2 < m < 1
B. − 2 < m
C. − 2 ≤ m < 1
D. − 2 ≤ m ≤ 1
Đáp án A
Để phương trình f(x)=m có 3 nghiệm phân biệt thì đường thẳng y=m cắt đồ thị hàm số tại 3 điểm phân biệt.
Dựa vào bảng biến thiên ta thấy -2<m<1
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m + 1 có 3 nghiệm thực phân biệt?
A. –3 ≤ m ≤ 3
B. –2 ≤ m ≤ 4
C. –2 < m < 4
D. –3 < m < 3
Đáp án D
Phương pháp:
Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1
Cách giải:
Số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)
và đường thẳng y = m + 1
Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì –2 < m+1 < 4 ó –3 < m < 3