Gọi z 1 ; z 2 là hai nghiệm của phương trình z 2 - 2 z + 5 = 0 . Tính z 1 2 + z 1 . z 2 .
A. 5
B. 10
C. 15
D. 0
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12+2i
B. -2+12i
C. 6-4i
D. 12+4i
Đáp án A.
Do nên tập hợp điểm M là các điểm nằm ngoài đường tròn và nằm trong đường tròn
Dựa vào hình vẽ ta chứng minh được
Khi đó
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 ; z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12 + 2 i
B. - 2 + 12 i
C. 6 - 4 i
D. 12 + 4 i
Cho số phức z thỏa mãn |z - 2 - 3i| = 1. Gọi M = max| z ¯ + 1 + i|. Tính giá trị của biểu thức
A. M 2 + m 2 = 28
B. M 2 + m 2 = 26
C. M 2 + m 2 = 24
D. M 2 + m 2 = 20
Đáp án A.
Ta có
Lấy môđun hai vế, ta được
Đặt khi đó (*)
Cho số phức z thỏa mãn z - 2 - 3 i = 1 . Gọi M = m a x z ¯ + 1 + i , m = m i n z ¯ + 1 + i . Tính giá trị của biểu thức M 2 + m 2
A. M 2 + m 2 = 28
B. M 2 + m 2 = 26
C. M 2 + m 2 = 24
D. M 2 + m 2 = 20
Đáp án A.
Ta có 1 = z - 2 - 3 i 2 = z - 2 - 3 i . z - 2 - 3 i ¯ = z - 2 - 3 i z ¯ - 2 + 3 i ¯ = z - 2 - 3 i z ¯ - 2 + 3 i
Lấy môđun hai vế, ta được z - 2 - 3 i . z ¯ - 2 + 3 i = 1 ⇔ z ¯ - 2 + 3 i = 1 ( * )
Đặt w = z ¯ + 1 + i ⇔ z ¯ = w - 1 - i , khi đó (*) ⇔ w - 1 - 2 - 3 i = 1 ⇔ w - 3 + 2 i = 1 .
⇒ w m i n = 3 2 + 2 2 - 1 = 13 - 1 w m i n = 3 2 + 2 2 - 1 = 13 + 1 ⇒ M = 13 + 1 m = 13 - 1 ⇒ M 2 + m 2 = 13 + 1 2 + 13 - 1 2 = 28 .
Gọi z1 z2 là hai nghiệm phức của phương trình \(z^2-4z+5=0\) . Tính:
w = \(\dfrac{1}{z_1}+\dfrac{1}{z_2}+i\left(z_1^2z_2+z^2_2z_1\right)\)
\(z^2-4z+5=0\Rightarrow\left\{{}\begin{matrix}z_1+z_2=4\\z_1z_2=5\end{matrix}\right.\) theo hệ thức Viet
\(w=\dfrac{z_1+z_2}{z_1z_2}+i.z_1z_2\left(z_1+z_2\right)=\dfrac{4}{5}+i.5.4=\dfrac{4}{5}+20i\)
Cho số phức z. Gọi A, B lần lượt là các điểm trong mặt phẳng (Oxy) biểu diễn các số phức z và 1 + i z . Tính |z| biết diện tích tam giác OAB bằng 8.
A. |z| = 4
B. | z | = 4 2
C. |z| = 2
D. | z | = 2 2
Cho a=3^2010+2011
Gọi x là tổng các chữ số của a, y là tổng các chữ số của x và gọi z là tổng các chữ số của y. Tìm z
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;-1;1); B(2;1;-2), C(0;0;1) . Gọi H(x;y;z) là trực tâm của tam giác ABC thì giá trị của x+y+z là kết quả nào dưới đây?
A. 1
B. 1 3
C. 2
D. 3
Trong số các số phức z thỏa mãn điều kiện z - 4 + 3 i = 3 gọi z 0 là số phức có mô đun lớn nhất. Khi đó z 0 là:
A. 3
B. 4
C. 5
D. 8
Đáp án D
Cách giải: gọi z=x+yi
Vậy quỹ tích các điểm z thuộc đường tròn tâm I(4;-3); R=3
Đặt
(theo bunhiacopxki)
Trong số các số phức z thỏa mãn điều kiện |z-4+3i|=3, gọi z 0 là số phức có mô đun lớn nhất. Khi đó | z 0 | là:
A. 3
B. 4
C. 5
D. 8