Đáp án D
Cách giải: gọi z=x+yi
Vậy quỹ tích các điểm z thuộc đường tròn tâm I(4;-3); R=3
Đặt
(theo bunhiacopxki)
Đáp án D
Cách giải: gọi z=x+yi
Vậy quỹ tích các điểm z thuộc đường tròn tâm I(4;-3); R=3
Đặt
(theo bunhiacopxki)
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12+2i
B. -2+12i
C. 6-4i
D. 12+4i
Cho z = x + y i với x, y ∈ R là số phức thỏa mãn điều kiện z ¯ + 2 - 3 i ≤ | z + i - 2 | ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 x . Tính M+m.
Trong các số phức thỏa mãn điều kiện z - 4 i - 2 = 2 i - z , môđun nhỏ nhất của số phức z bằng:
A. 2
B. 3
C. 2 2
D. 2 3
Môđun của số phức z thỏa mãn điều kiện z + ( 2 - i ) z = 13 - 3 i là
A. 3
B. 5
C. 17
D. 17
Cho hai số phức z1 z2 thỏa mãn đồng thời hai điều kiện sau |z-1|=\(\sqrt{34}\) , |z+1+mi| = |z+m+2i| (trong đó m là số thực) và sao cho |z1 z2| lớn nhất.Khi đó giá trị |z1 + z2| bằng:
A:\(\sqrt{2}\)
B:10
C:2
D:\(\sqrt{130}\)
Môđun của số phức z thỏa mãn điều kiện ( 3 z - z ) ( 1 + i ) - 5 z = 8 i - 1 là
A. 1
B. 5
C. 13
D. 13
Cho số phức z thỏa mãn 5 ( z + i ) z + 1 = 2 - i . Khi đó môđun của số phức w = 1 + z + z 2 là
A. 5
B. 13
C. 13
D. 5
Cho số phức z thỏa mãn z - 2 - 4 i = 5 và z m i n . Khi đó số phức z là
A. z = 3+2i
B. z = 2 -i
C. z = 1 +2i
D. z = 4 +5i
Cho số phức z thỏa mãn (3 + 2i)z + (2 - i)2 = 4 + i. Môđun của số phức w = ( z + 1 ) z là
A. 2
B. 4
C. 10
D. 10