Tìm các số thực p và q thỏa mãn 3 p + 2 q - 3 i = 9 - 8 i với i là đơn vị ảo.
A. p = 2 , q = - 4
B. p = 3 , q = - 5 2
C. p = 4 , q = - 4
D. p = 3 , q = - 11 2
1) Cho x,y,z là các số thực thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng
\(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\le\left(1-xyz\right)^3\)
2) Cho x,y là các số thực thỏa mãn \(x^2+xy+y^2=3\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
\(P=2x^2-5xy+2y^2\)
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
Tìm các số thực x,y thỏa mãn \(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)
Tìm tất cả các số thực thỏa mãn:
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)(*)
Ta có (*) <=> \(\left[\left(x^2+1\right)y-4x\right]^2+\sqrt{x^2-2x-y^2+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)y-4x=0\\x^2-2x-y^3+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}yx^2-4x+y=0\left(1\right)\\x^2-2x-y^3+9=0\left(2\right)\end{cases}}}\)
Nếu y=0 thì từ (1) => x=0, thay vào (2) không thỏa mãn
Nếu y\(\ne\)0 ta coi (1) và (2) là phương trình bậc hai ẩn x
Điều kiện để có nguyên x là: \(\hept{\begin{cases}\Delta_1=4-y^2\ge0\\\Delta_2=y^3-8\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}-2\le y\le2\\y\ge2\end{cases}\Leftrightarrow}y=2}\)
Thay y=2 vào hệ (1), (2) ta được \(\hept{\begin{cases}2x^2-4x+2=0\\x^2-2x+1=0\end{cases}\Leftrightarrow x=1}\)
Vậy x=1; y=2
Bài 1: cho x,y là các số thực thõa mãn \(\sqrt{x+2}-y^3=\sqrt{y+3}-x^3.\)
tìm MIN của \(B=x^2-2y^2+2xy+2y+10\)
Bài 2: cho 3 số thực x,y,z thỏa mãn \(x^2+y^2+z^2=3\)
tìm MAX và MIN của \(P=x+y+2z\)
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
Cho các số thực x,y thỏa mãn \(x^3+y^3=2.CMR:x^2+y^2+\frac{9}{x+y}\ge\frac{9\sqrt{3}}{2}\)
Bài 1: Cho a,b là các số dương thỏa mãn \(a^9+b^9=a^{10}+b^{10}=a^{11}+b^{11}.\)Tính giá trị của biểu thức \(P=a^{2018}+b^{2018}+2018\)
Bài 2:a, Tìm GTLN của biểu thức : \(A=5+2xy+14y-x^2-5y^2-2x\)
b, Tìm tất cả số nguyên dương n sao cho \(B=2^n+3^n+4^n\)là số chính phương.
Bài 3: Cho x,y là 2 số thực thỏa mãn :\(x^2+y^2-4x+3=0\). Tìm giá trị lớn nhất, nhỏ nhất của M=\(x^2+y^2\)
Bài 4; Cho \(A=3x^3-2x^2+ax-a-5\)và \(B=x-2\). Tìm a để \(A⋮B\)
Bài 5: Cho x,y,z là các số thực khác 0 thỏa mãn x+y+z=3 và \(x^2+y^2+z^2=9\). Tính giá trị của biểu thức \(P=\left(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}-4\right)^{2019}\)
Cho $x$, $y$ là các số thực dương thỏa mãn $x + y \le 3$. Tìm giá trị nhỏ nhất của biểu thức $Q = x^2 + y^2 - 9 x - 12 y + \dfrac{16}{2x+y} + 25.$
1) Với x, y, z là các số thực thỏa mãn xy + yz + zx = 13, chứng minh rằng \(21x^2+21y^2+z^2\ge78\)
2) Cho các số thực x, y, z khác 0 thỏa mãn x + y + z = 3xyz, chứng minh rằng\(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
3) Với a, b, c là các số thực dương thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất của P = a3 + 64b3 + c3
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)
1)Cho a, b là các số nguyên dương thỏa mãn \(a^2-ab+b^2\)chia hết cho 9. Chứng minh rằng cả a và b đều chia hết cho 3
2)Với câc số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2+2abc=1\).Tìm giá trị lớn nhất của biểu thức \(ab+bc+ca-abc\)
.
1/ \(4\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮3\)
\(\Rightarrow2a-b⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮9\)
\(\Rightarrow3b^2⋮9\)
\(\Rightarrow b⋮3\)
\(\Rightarrow a⋮3\)
Câu 2 em nghĩ là dùng dồn biến.Câu 2 nếu làm kỹ sẽ rất dài do đó em làm khá tắt, vì vậy không thể tránh khỏi những sai sót khi quy đồng, chị tự kiểm tra lại:P
Giả sử c = min{a,b,c} suy ra \(1\ge3c^2+2c^3\Leftrightarrow0< c\le\frac{1}{2}\)
Chọn t > 0 thỏa mãn: \(2t^2+2t^2c=a^2+b^2+2abc\Leftrightarrow2t^2-\left(a^2+b^2\right)=2c\left(ab-t^2\right)\)
Giả sử \(ab>t^2\Rightarrow2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (trái với giả us73)
Vậy giả sử sai hay \(ab\le t^2\text{ và }a^2+b^2\ge2t^2\ge2ab\)
Đặt \(f\left(a;b;c\right)=ab+bc+ca-abc\)
Xét hiệu \(d=f\left(a;b;c\right)-f\left(t;t;c\right)\)
\(=\left(ab-t^2\right)+c\left(a+b-2t\right)-c\left(ab-t^2\right)\)
\(=\left(1-c\right)\left(ab-t^2\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)
\(=\left(1-c\right)\left(ab-t^2\right)+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)
\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)
\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)\left(1-c\right)}{a+b+2t}\)
\(=\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)\left[\frac{1}{2c}+\frac{1}{a+b+2t}\right]\le0\)
Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=t^2+2tc-t^2c\). Ta cần tìm max của f(t;t;c). Mặt khác từ cách chọn t ta thấy:
\(2t^2+c^2+2t^2c=1\Leftrightarrow t=\sqrt{\frac{1-c}{2}}\). Do đó
\(f\left(t;t;c\right)=\frac{1-c}{2}+2\sqrt{\frac{1-c}{2}}.c-\frac{\left(1-c\right)c}{2}\) với \(0< c\le\frac{1}{2}\)
Dễ thấy f(t;t;c) là hàm đồng biến với \(0< c\le\frac{1}{2}\) nên f(t;t;c) đạt max tại c = 1/2. Khi đó \(f\left(t;t;c\right)=\frac{5}{8}\)
Vậy.....