Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 10 2019 lúc 3:22

TXĐ: D = R

y’ = 3 x 2  + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3 x 2  + 4mx + m có hai nghiệm phân biệt.

⇔ Δ’ = 4 m 2  -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2017 lúc 3:10

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Dựa vào BBT thấy hàm số đạt cực đại tại x = -m – 1.

Hàm số đạt cực đại tại x = 2 ⇔ -m – 1 = 2 ⇔ m = -3.

Vậy m = -3.

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2019 lúc 13:15

An Hoài Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 18:12

- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)

- Với \(m\ne0\) hàm chỉ có cực đại khi:

\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)

Vậy \(m\le0\)

Shuu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 2 2017 lúc 9:27

TXĐ: D = R

y’ = 3 x 2 – 4x + m; y’ = 0 ⇔ 3 x 2  – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

∆ ’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)

Hàm số có cực trị tại x = 1 thì :

y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )

Mặt khác, vì:

y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2019 lúc 10:50

TXĐ: D = R

y’ = 3 x 2  – 4x + m; y’ = 0 ⇔ 3 x 2  – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

∆’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)

Hàm số có cực trị tại x = 1 thì :

y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )

Mặt khác, vì:

y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2018 lúc 7:36

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 9 2018 lúc 4:01

Đáp án: C.

Tập xác định: D = R. y' = 3 x 2  - 6x + m.

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R

⇔ 3 x 2  - 6x + m = 0 có hai nghiệm phân biệt

⇔ ∆ ' = 9 - 3m > 0 ⇔ 3m < 9 ⇔ m < 3