Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 5 2018 lúc 7:52

Số phần tử của không gian mẫu n(Ω)=10!

Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là: n =2–2.9=18432.

Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.

+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.

+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.

+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2019 lúc 6:44

Chọn D

Xếp ngẫu nhiên tám học sinh thành hàng ngang, có 8! cách. Suy ra  n ( Ω ) = 8! = 40320

Gọi A là biến cố cần tính xác suất.

Ta coi Hoàng, Lan, Nam ( Lan ở giữa) là một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên coi nhóm này là một nam. Vậy có thể coi ta có ba nam và ba nữ.

Khi đó có hai trường hợp xảy ra.

Trường hợp 1: Nam ngồi vị trí lẻ.

Xếp ba nam vào vị trí lẻ có 3! cách.

Xếp ba nữ vào vị trí chẵn có 3! cách.

Hoán vị hai học sinh nam trong nhóm ( Hoàng- Lan- Nam) có 2! cách.

Vậy số cách sắp xếp trong trường hợp này là 3!.3!.2! = 72 cách.

Trường hợp 2: Nam ngồi vị trí chẵn.

Tương tự trường hợp này có 3!.3!.2! = 72 cách.

Suy ra n(A) = 72 + 72 = 144 cách.

Vậy 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2018 lúc 2:12

Đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2020 lúc 11:05

Chọn D

Xếp ngẫu nhiên 8 học sinh có 8! cách.

"Buộc" Hoàng, Lan, Nam thành một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên ta xem nhóm ba người này là một nam. Vậy có ba nam và ba nữ.

Trường hợp 1: nam ngồi vị trí lẻ.

Xếp 3 nam vào 3 vị trí lẻ: 3!

Xếp 3 nữ vào 3 vị trí chẵn: 3!

Hoán vị hai học sinh nam trong nhóm: 2!

Suy ra số cách xếp trong trường hợp này là: 3!.3!.2!=72 cách

Trường hợp 2: nam ngồi vị trí chẵn

Tương tự có 72 cách

Vậy có 72 + 72 = 144  cách xếp tám học sinh không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam.

Suy ra xác suất cần tìm là P = 144 8 ! = 1 280 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2018 lúc 2:34

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5! x 5! =  120 2 .

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5! x 5! =  120 2 .

Theo quy tắc cộng có 120 2 + 120 2 = 2 × 120 2  cách xếp thoả mãn.

Vậy xác suất cần tính  2 5 ! 2 10 ! = 1 126 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 1 2018 lúc 2:56

Đáp án đúng : C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2018 lúc 12:26

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5!x5!= 120 2

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5!x5!= 120 2

Theo quy tắc cộng có  120 2 +  120 2 =2x  120 2 cách xếp thoả mãn.

Vậy xác suất cần tính  2 ( 5 ! ) 2 10 ! = 1 126

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2017 lúc 5:49

Chọn C

Số phần tử của không gian mẫu là 

Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".

Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:

Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách

Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có  A 7 5 = 2520 cách.

Vậy n(A) =720.2520 = 1814400

Xác suất cần tìm là 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2018 lúc 14:03