tim x thuoc Z:
a, ( x - 1 ) . ( x - 4 ) > 0
b, ( x +1 ) . ( x + 5 ) < 0
Tim x thuoc Z:
a, -8 ⋮ 2x + 1
b, -54 ⋮ 4x - 1
a: \(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-1\right\}\)
a)Ư(-8)={1,2,4,8,-1,-2,-4,-8}
2x+1 | 1 | 2 | 4 | 8 | -1 | -2 | -4 | -8 |
x | 0 | 0,5 | 1,5 | 3,5 | -1 | -1,5 | -2.5 | -4,5 |
b)Ư(-54)={-1,-2,-3,-6,-9,-18,-27,-54,1,2,3,6,9,18,27,54}
4x-1 | -1 | -2 | -3 | -6 | -9 | -18 | -27 | -54 | 1 | 2 | 3 | 6 | 9 | 18 | 27 | 54 |
x | 0 | -0.25 | -0,5 | -1,25 | -2 | -4,25 | -6,25 | -13,25 | 0.5 | 0.75 | 1 | 1,75 | 2,5 | 4,75 | 7 | 13,75 |
Tìm giá trị x, y, z:
a. (5x-2)(-1/3-2x)=0
b. x/2=y/3 với xy=54
c. x+2x+3x+4x+...+100x=-213
a: =>5x-2=0 hoặc 2x+1/3=0
=>x=-1/6 hoặc x=2/5
b: Đặt x/2=y/3=k
=>x=2k; y=3k
xy=54
=>6k^2=54
=>k^2=9
=>k=3 hoặc k=-3
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
c: =>5050x=-213
=>x=-213/5050
tim x thuoc z biet
(x-1)(x-3)=-5
(x+1)(x+4)=0
(x^2-4)(x^2-19)<0
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
tim x , y thuoc Z
|x+2|.|y-1|-4|y-1|=0
|x-2|+|(x-2).(y+5)|=0
bài 1: tim x, biết
a,x.(x - 2) + x - 2 = 0
b,x3 + x + x + 1 = 0
c,5x.(x - 4) = 2x + 8
d,(5x - 4)2 - 49x2 = 0
a,x(x-2)+x-2=0
⇔ (x-2)(x+1)=0
⇔ x=2;x=-1
b,x3+x2+x+1=0
⇔ x2(x+1)+x+1=0
⇔ (x+1)(x2+1)=0
⇔ x=-1
1 )Tim x, y thuoc Z
x + y = x.y
2) Tim x thuoc Z
(x + 1)+(x+3)+(x+5)+...+(x+99)=0(x-3)+(x-2)+(x-1)+...+10+11=11-12(x-5)+7(3-x)=530(x+2)-6(x-5)-24x=100x + y = x.y
=> xy - x - y = 0
=> (xy - x) - y + 1 = 1
=> x(y - 1) - (y - 1) = 1
=> (x - 1)(y - 1) = 1
=> x - 1 = y - 1 = 1 hoặc x - 1 = y - 1 = -1
=> x = y = 2 hoặc x = y = 0
Tìm x,y thuộc Z:
a) |x+1|+(2y-1)\(^2\)=3
b) |x+1|+|y-2|=2
c)|3x-1|+|2y-5|=3
d) |2x+1|+|y-5|=0
a: |x+1|+(2y-1)^2=3
mà x,y nguyên
nên (2y-1)^2=1 và |x+1|=2
=>\(\left\{{}\begin{matrix}x+1\in\left\{2;-2\right\}\\2y-1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-3\right\}\\y\in\left\{1;0\right\}\end{matrix}\right.\)
c: |3x-1|+|2y-5|=3
Th1: |3x-1|=0 và |2y-5|=3
=>3x-1=0 và 2y-5 thuộc {3;-3}
=>y thuộc {4;1}(nhận) và x=1/3(loại)
TH2: |3x-1|=1 và |2y-5|=2
=>3x-1 thuộc {1;-1} và 2y-5 thuộc {2;-2}
=>x thuộc {2/3;0} và y thuộc {7/2;3/2}
=>Loại
TH3: |3x-1|=2 và |2y-5|=1
=>3x-1 thuộc {2;-2} và 2y-5 thuộc {1;-1}
=>x=3 và y thuộc {3;2}
TH4: |3x-1|=3 và |2y-5|=0
=>3x-1 thuộc {3;-3} và 2y-5=0
=>y=5/2(loại)
d: |2x+1|+|y-5|=0
=>2x+1=0 và y-5=0
=>y=5(nhận) và x=-1/2(loại)
=>Ko có cặp số (x,y) nào thỏa mãn
Tim x thuoc Z
1/ x(x+3)=0
2/ (x-2)(5-x)=0
3/(x-1)(x2+1)=0
dễ thôi
1/ x(x+3)=0 2/ (x-2)(5-x)=0 3/(x-1)(x2+1)=0
=> x=0 hoặc x+3=0 => x-2=0 hoặc 5-x=0 => x-1=0 hoặc x2+1=0
TH1: x=0 TH2: x+3=0 TH1: x-2=0 TH2: 5-x=0 TH1: x-1=0 TH2: x2+1=0
=> x= -3 => x=2 => x=5 => x=1 => x2 =-1
vậy x thuộc {0; -3} Vậy x thuộc { 2; 5 } =>x2=(-1)2 hoặc x2=12
TH1: x2=(-1)2 TH2: x2=12
=> x= -1 =>x=1
vậy x thuộc { 1; -1 }
tích cho mình nha bài mình làm đúng đấy
a)x(x+3)=0
=>x=0 hoặc x+3=0
x=0-3
x=-3
b)(x-2)(5-x)=0
=>x-2=0 hoặc 5-x=0
x=0+2 x=5-0
x=2 x=5
3)(x-1)(x2+1)=0
=>x-1=0 hoặc x2+1=0
x=0+1 x2=0-1=-1 mà x2>=0(với mọi x) (loại)
x=1
Vậy x=1
a)x(x+3)=0
=>x=0 hoặc x+3=0
x=0-3
x=-3
b)(x-2)(5-x)=0
=>x-2=0 hoặc 5-x=0
x=0+2 x=5-0
x=2 x=5
3)(x-1)(x2+1)=0
=>x-1=0 hoặc x2+1=0
x=0+1 x2=0-1=-1 mà x2>=0(với mọi x) (loại)
x=1
Vậy x=1
tim x thuoc Z biet :
(x-1)^2 =(x-3)^4
HELP ME:0!!
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
(x-1)^2 =(x-3)^4=\(\left\{{}\begin{matrix}1+1\\2+2\\3+3\\4+4\end{matrix}\right.=2+4+6+8=\sqrt[]{251234=\Sigma\dfrac{2}{2}22\dfrac{2}{2}}\max\limits_{212}=\dfrac{21}{23}2123=\sum\limits1^{ }_{ }\text{(x-1)^2 =x=}\sum1\)
Bổ sung cho @ Huỳnh Thanh Phong.
(- \(x^2\) + 7\(x\) - 10).(\(x^2\) - 5\(x\) + 8) = 0
(- \(x^2\) + 5\(x\) + 2\(x\) - 10).(\(x^2\) - \(\dfrac{5}{2}\)\(x\) - \(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{7}{4}\)) = 0
[(- \(x^2\) + 5\(x\)) + (2\(x\) - 10)].[(\(x^2\) - \(\dfrac{5}{2}\)\(x\)) - (\(\dfrac{5}{2}\)\(x\) - \(\dfrac{25}{4}\)) + \(\dfrac{7}{4}\)] = 0
[ -\(x\)(\(x\) - 5) + 2.(\(x\) - 5)]. [\(x\)(\(x\) - \(\dfrac{5}{2}\)) - \(\dfrac{5}{2}\).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x-\dfrac{5}{2}\)).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\)] = 0 (1)
Vì (\(x\) - \(\dfrac{5}{2}\))2 ≥ 0 ⇒ (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\) ≥ \(\dfrac{7}{4}\) (2)
Kết hợp (1) và (2) ta có:
\(\left[{}\begin{matrix}x-5=0\\-x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {2; 5}