Tìm tất cả các giá trị thực của tham số để đồ thị hàm số y = x 3 - 3 x 2 + m có hai điểm phân biệt đối xứng nhau qua gốc tọa độ.
A. m > 1
B. m > 0
C. m ≤ 0
D. 0 < m < 1
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 - m x + 1 có đúng 3 đường tiệm cận.
A. -2<m<2
B. m > 2 m < - 2 h o ặ c m ≠ - 5 2
C. m>2 hoặc m<-2
D. m > 2 m ≠ 5 2 hoặc m<-2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 – m x + 1 có đúng 3 đường tiệm cận
A. -2 < m < 2
B. m > 2 m < - 2 m ≠ - 5 2
C. m < - 2 m > 2
D. m < - 2 m > 2 m ≠ 5 2
Cho hàm số y = f x = x 3 − 3 x 2 + m x + 1. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số f x có 3 điểm cực trị.
A. m=-1
B. m=2
C. m=0
D. m=1
Đáp án C
TXĐ: D = ℝ .
Ta có y ' = 3 x 2 − 6 x + m .
Để hàm số f x có ba điểm cực trị thì y ' = 0 có hai nghiệm phân biệt, trong đó có một nghiệm bằng 0.
Vậy m=0 thỏa mãn đề bài.
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > − 1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > 1
Đáp án B.
Hàm số y = f x + m là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x thành đồ thị hàm số y = f x + m :
* Nếu m > 0:
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang trái m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
* Nếu m=0 :
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang phải m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
Quan sát ta thấy đồ thị hàm số y = f x có 2 điểm cực trị.
Để đồ thị hàm số y = x + m có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m phải có 2 điểm cực trị => Điểm cực trị của đồ thị hàm số y = f x phải được tịnh tiến sang phải O y ⇒ m < − 1 .
Hình bên là đồ thị của hàm số y = x 3 - 3 x Tìm tất cả các giá trị thực của tham số m để phương trình | x | 3 - 3 | x | = 2 m có 4 nghiệm phân biệt
A.
B.
C.
D.
Đáp án D
Từ đồ thị hàm số đã cho (như hình vẽ) ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán
:
Tìm tất cả các giá trị thực của tham số m để hai đồ thị hàm số y = - x 2 - 2 x + 3 và y = x 2 - m có điểm chung.
A. m = − 7 2
B. m < − 7 2
C. m > − 7 2
D. m ≥ − 7 2
Phương trình hoành độ giao điểm - x 2 - 2 x + 3 = x 2 - m
⇔ 2 x 2 + 2 x - m - 3 = 0 *
Để hai đồ thị hàm số có điểm chung khi và chỉ khi phương trình (∗) có nghiệm
⇔ ∆ = 1 - 2 - m - 3 ≥ 0 ⇔ m ≥ - 7 2
Đáp án cần chọn là: D
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 1 x - m có tiệm cận đứng.
A. Với mọi m
B. m ≠ 0
C. m ≠ 1
D. m = 0
Tìm tất cả các giá trị thực của tham số a để đồ thị hàm số y = x - x 2 + 1 a x 2 + 2 tiệm cận ngang.
A. a>0
B. a = 1 hoặc a = 4.
C. a ≤ 0
D. a ≥ 0