Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 3 2019 lúc 14:56

Thay y = 4 x  vào biểu thức P và biến đổi ta thu được

P = - 9 log 2 2 + 27 log 2 x - 27 .

Do y ≥ 1  nên x ≤ 4 . Suy ra 1 2 ≤ x ≤ 4 . Đặt t = log 2 x , khi đó - 1 ≤ t ≤ 2 .

Xét hàm số f(t0 = - 9 t 2 + 27t - 27;  t ∈ - 1 ; 2

Ta có f ' (t) = -18t + 27; f ' (t) = 0  ⇔ t = 3 2

f (-1) = -63; f (2) = -9;  f 3 2 = 27 4

Vậy

m a x   P   = - 27 4 ⇔ x = 2 2 ; y = 2

Đáp án A

Thầy Cao Đô
Xem chi tiết
Tuấn Giang
9 tháng 5 2021 lúc 17:01

-5

Khách vãng lai đã xóa
Nguyễn Mai Hằng
31 tháng 5 2021 lúc 15:52

undefined

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2018 lúc 15:21

Đáp án C

Phương pháp:

Rút y theo x từ phương trình (1), thế vào phương trình (2) để tìm khoảng giá trị của x.

Đưa biểu thức P về 1 ẩn x và tìm GTLN, GTNN của biểu thức P.

Cách giải: 

Ta nhận thấy x = 0 không thỏa mãn phương trình (1), do đó  thế vào (2):

Sử dụng MTCT ta tính được

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 1 2017 lúc 14:50

Đáp án C

Ta có: 9 a 3 + a b + 1 = 3 b + 2 ⇔ 9 a 3 + a = b + 1 3 b + 2  

Đặt t = 3 b + 2 ⇒ b = t 2 - 2 3 ⇒ 9 a 3 + a = t 2 + 1 3 t ⇔ 27 a 3 + 3 a = t 3 + t ⇔ 3 a 3 + 3 a = t 3 + t  

Xét hàm số f u = u 3 + u u ∈ ℝ ⇒ f ' u = 3 u 2 + 1 > 0   ∀ u ∈ ℝ ⇒ f u  đồng biến trên ℝ  

Khi đó:  f 3 a = f t ⇔ t = 3 a ⇒ 3 b + 2 = 3 a ⇔ b = 9 a 2 - 2 3  

Suy ra S = 6 a - 3 a 2 + 2 3 = - 3 a - 1 2 + 11 3 ≤ 11 3 . 

Do đó giá trị lớn nhất của biểu thức S = 6a - b là 11 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 1 2019 lúc 17:53

Đáp án B.

Ta có  4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y

⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .

Suy ra  x y ≤ x + y 2 2 = 1

Khi đó

P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y

≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y

= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18

Vậy Pmax = 18 khi x = y = 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 16:36

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 5 2019 lúc 13:42

Đáp án B

Game Good
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 2 2022 lúc 23:52

\(x+y\le xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\le1\)

\(M=\dfrac{1}{2\left(x^2+y^2\right)+y^2}+\dfrac{1}{2\left(x^2+y^2\right)+x^2}\le\dfrac{1}{4xy+y^2}+\dfrac{1}{4xy+x^2}\)

\(B\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)+\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{x^2}\right)=\dfrac{1}{25}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}+\dfrac{6}{xy}\right)\)

\(M\le\dfrac{1}{25}\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right]=\dfrac{1}{10}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le\dfrac{1}{10}\)

\(M_{max}=\dfrac{1}{10}\) khi \(x=y=2\)

YUUKI
Xem chi tiết
Akai Haruma
25 tháng 10 2023 lúc 0:33

Lời giải:

Áp dụng BĐT Cô-si và Cauchy-Schwarz cho các số dương ta có:

$A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\geq \frac{1}{x}+\frac{1}{\frac{x+y}{2}}=\frac{1}{x}+\frac{2}{x+y}=2(\frac{1}{2x}+\frac{1}{x+y})$

$\geq 2.\frac{4}{2x+x+y}=\frac{8}{3x+y}\geq \frac{8}{4}=2$

Vậy $A_{\min}=2$. Giá trị này đạt được tại $x=y; 3x+y=4\Leftrightarrow x=y=1$