Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hai số thực dương a, b thỏa mãn 9 a 3 + a b + 1 = 3 b + 2 . Giá trị lớn nhất của biểu thức S = 6a - b là

A.  17 12

B.  82 3

C.  11 3

D.  89 12

Cao Minh Tâm
10 tháng 1 2017 lúc 14:50

Đáp án C

Ta có: 9 a 3 + a b + 1 = 3 b + 2 ⇔ 9 a 3 + a = b + 1 3 b + 2  

Đặt t = 3 b + 2 ⇒ b = t 2 - 2 3 ⇒ 9 a 3 + a = t 2 + 1 3 t ⇔ 27 a 3 + 3 a = t 3 + t ⇔ 3 a 3 + 3 a = t 3 + t  

Xét hàm số f u = u 3 + u u ∈ ℝ ⇒ f ' u = 3 u 2 + 1 > 0   ∀ u ∈ ℝ ⇒ f u  đồng biến trên ℝ  

Khi đó:  f 3 a = f t ⇔ t = 3 a ⇒ 3 b + 2 = 3 a ⇔ b = 9 a 2 - 2 3  

Suy ra S = 6 a - 3 a 2 + 2 3 = - 3 a - 1 2 + 11 3 ≤ 11 3 . 

Do đó giá trị lớn nhất của biểu thức S = 6a - b là 11 3 .


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết