Có tất cả bao nhiêu giá trị thực của tham số m để đồ thị của hàm số y = x 4 - 2 m 2 + 2 có ba điểm cực trị cùng với điểm D(2;1) tạo thành một tứ giác nội tiếp được đường tròn?
A. 0
B. 2
C. 3.
D. 1
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y = x - 1 x 2 + m x + 4 có 2 đường tiệm cận?
A. 1
B. 2
C. 3
D. 0
Chọn C
Ta có:
nên đồ thị hàm số luôn có 1 TCN là y = 0
Đồ thị hàm số có 2 đường tiệm cận thì nó chỉ có duy nhất 1 đường tiệm cận đứng
⇔ phương trình x 2 + m x + 4 = 0 có nghiệm x = 1
hoặc phương trình x 2 + m x + 4 = 0 có nghiệm kép (có thể bằng 1)
Vậy có 3 giá trị của m thỏa mãn bài toán
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^3 - (3m +1).x^2 + (2m -1)x +m +1 . Có bao nhiêu số tự nhiên m<100 để đồ thị hs có hai điểm cực trị nằm về 2 phía của trục hoành.
Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y = x - 1 x 2 + m x + 4 có hai đường tiệm cận
A. 1
B. 0
C. 2
D. 3
Cho hàm số y = f ( x ) thỏa mãn lim x → - ∞ f ( x ) = 2019 m , lim x → + ∞ f ( x ) = 2020 m 4 (với m là tham số thực). Hỏi có tất cả bao nhiêu giá trị của m để đồ thị của hàm số y = f ( x ) có duy nhất một tiệm cận ngang?
A. 4
B. 2
C. 3
D. 1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > − 1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > 1
Đáp án B.
Hàm số y = f x + m là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x thành đồ thị hàm số y = f x + m :
* Nếu m > 0:
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang trái m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
* Nếu m=0 :
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang phải m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
Quan sát ta thấy đồ thị hàm số y = f x có 2 điểm cực trị.
Để đồ thị hàm số y = x + m có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m phải có 2 điểm cực trị => Điểm cực trị của đồ thị hàm số y = f x phải được tịnh tiến sang phải O y ⇒ m < − 1 .
Tìm tất cả giá trị thực của tham số m để đồ thị hàm số y = x + 1 m x - 1 2 + 4 có hai tiệm cận đứng
A. m < 0
B. m = 0
C. m < 0 m ≠ - 1
D. m < 1
Cho hàm số y = f x = x 4 - 2 m 2 + 6 - 2 m có đồ thị C m với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên của m để cắt trục hoành tại 4 điểm phân biệt?
A. 1
B. 3
C. 4
D. 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x + 1 m x − 1 2 + 4 có hai tiệm cận đứng
A. m < 1
B. m < 0 m ≠ − 1
C. m = 0
D. m < 0