Tìm x:
a. x : 14 = 301
b. x : 11 = 32
c. x : 103 = 101
Tìm x:
a, (-5) +x = 7
b, (-14) - x + (-15) = -10
c, 12 + x (-5) = -18
d, x - (-19) - (-11) = 0
Tìm số nguyên x, biết rằng
1) (-5) +x =7
2) (-14)-x+(-15)=-10
3) 12+x+(-5)= -18
4) x-(-19)-(11)= 0
1: x=7+5=12
2: =>-29-x=-10
=>x+29=10
=>x=-19
3: =>x+7=-18
=>x=-25
4: =>x+19-11=0
=>x+8=0
=>x=-8
tìm x
a) 1/5 nhân 8+1/8 nhân 11+1/11 nhân 14+......+1/x(x+3)=101/1540
1) a/ /x+2/=x+3
b/ /x-2/=2-x
c/ /2x-1/=3
d/ /x-12/=x
2) tinh
a/ 11 - 12 + 13 - 14 + 15 - 16 + 17 - 18 + 19 -20
b/ 101 - 102 - ( - 103 ) - 104 -( - 105 ) - 106 - ( - 107) - 108 - (-109) - 110
1,a,\(\left|x+2\right|=x+3\Leftrightarrow\orbr{\begin{cases}x+2=x+3\\x+2=-x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-x=3-2\\x+x=-3-2\end{cases}\Leftrightarrow\orbr{\begin{cases}0=1\left(voly\right)\\x=\frac{-5}{2}\end{cases}}}\)
b, \(|x-2|=2-x\Leftrightarrow\orbr{\begin{cases}x-2=2-x\\x-2=x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+x=2+2\\x-x=-2+2\end{cases}\Rightarrow x=2}\)
c,\(\left|2x-1\right|=3\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
d,\(\left|x-12\right|=x\Leftrightarrow\orbr{\begin{cases}x-12=x\\x-12=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}0=12\left(voly\right)\\x=6\end{cases}}}\)
Tìm x:
a) √x = 3
b) √x = 6
c) √x = 8
d) √x = 12
e) 2√x = 10
f) 3√x = 21
g) √x = 8
h) 2 + √x = 11
\(a,\sqrt{x}=3\Leftrightarrow x=9\\ b,\sqrt{x}=6\Leftrightarrow x=36\\ c,\sqrt{x}=8\Leftrightarrow x=64\\ d,\sqrt{x}=12\Leftrightarrow x=144\\ e,2\sqrt{x}=10\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\\ f,3\sqrt{x}=21\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\\ g,\sqrt{x}=8\Leftrightarrow x=64\\ h,2+\sqrt{x}=11\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)
a. \(\sqrt{x}=3\)
<=> \(\left(\sqrt{\sqrt{x}}\right)^2-\left(\sqrt{3}\right)^2=0\)
<=> \(\left(\sqrt{\sqrt{x}}-\sqrt{3}\right)\left(\sqrt{\sqrt{x}}+\sqrt{3}\right)=0\)
<=> \(\left[{}\begin{matrix}\sqrt{\sqrt{x}}-\sqrt{3}=0\\\sqrt{\sqrt{x}}+\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\left(Vnghiêm\right)\end{matrix}\right.\)
Vậy nghiệm của PT là S = \(\left\{9\right\}\)
a) \(\sqrt{x}=3\Leftrightarrow x=9\)
b) \(\sqrt{x}=6\Leftrightarrow x=36\)
c) \(\sqrt{x}=8\Leftrightarrow x=64\)
d) \(\sqrt{x}=12\Leftrightarrow x=144\)
e) \(2\sqrt{x}=10\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)
f) \(3\sqrt{x}=21\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)
g) \(\sqrt{x}=8\Leftrightarrow x=64\)
h) \(2+\sqrt{x}=11\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)
Tìm x:
a) 1 = (2x + 0,5)600
b) (x - 0,125)2 = 0,25
c) (x - 3)11 = (x - 3)41
a) \(1=\left(2x+0,5\right)^{600}\)
\(\Rightarrow1^{600}=\left(2x+0,5\right)^{600}\)
\(\Rightarrow\left[{}\begin{matrix}2x+0,5=1\\2x+0,5=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=0,5\\2x=-1,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,25\\x=-0,75\end{matrix}\right.\)
b) \(\left(x-0,125\right)^2=0,25\)
\(\Rightarrow\left(x-0,125\right)^2=0,5^2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
c) \(\left(x-3\right)^{11}=\left(x-3\right)^{41}\)
\(\Rightarrow\left(x-3\right)^{11}-\left(x-3\right)^{41}=0\)
\(\Rightarrow\left(x-3\right)^{11}\left[1-\left(x-3\right)^{30}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-3=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`1 = (2x + 0,5)^600`
`=> (2x+0,5)^600 = (+-1)^600`
`=> \text {TH1: } 2x + 0,5 = 1`
`=> 2x = 1 - 0,5`
`=> 2x = 0,5`
`=> x = 0,5 \div 2`
`=> x = 0,25`
`\text {TH2: } 2x + 0,5 = -1`
`=> 2x = -1 - 0,5`
`=> 2x = -1,5`
`=> x = -1,5 \div 2`
`=> x = -0,75`
Vậy, `x \in {-0,75; 0,25}.`
`b)`
`(x - 0,125)^2 = 0,25`
`=> (x - 0,125)^2 = (+-0,5)^2`
`=> `\(\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,5+0,125\\x=-0,5+0,125\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
Vậy, `x \in {-0,375; 0,625}.`
`c)`
`(x - 3)^11 = (x - 3)^41`
`=> (x - 3)^11 - (x - 3)^41 = 0`
`=> (x - 3)^11 * [ 1 - (x - 3)^30] = 0`
`=>`\(\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\1-\left(x-3\right)^{30}=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy, `x \in {3; 4}.`
a, 1=(2x+0,5)600
=>1600=(2x+0,5)600
=>1=2x+0,5
=>2x+0,5=1
=> 2x= 1+0,5
=>2x= 1,5
=:>x= 1,5:2
=>x=0,75
b, (x-0,125)2=0,25
=>(x-0,125)2=(0,5)2
=>x-0,125=0,5
=>x=0,5 +0,125
=>x= 0,625
c, (x-3)11=(x-3)41
(x-3)11 -(x-3)41=0
(x-3)11-(x-3)11 .(x-3)30=0
(x-3)11.[1-(x-3)30 ]=0
(x-3)11.(4-x)30=0
(x-3)11=0 hoặc (4-x)30=0
(x-3)11=0 ( 4-x)30=0
x-3=0 4-x=0
x=0+3 x=4-0
x=3 x=4
vậy xϵ{3,4}
Tìm x:
a. ( x + 2 ) + ( x + 5 ) + ( x + 8 ) + ( x + 11 ) + ( x + 14 ) = 75
b. ( x + 1 ) + ( x + 3 ) + ( x + 5 ) + ... + ( x + 101 ) = 5400
a.(x+2)+(x+5)+(x+8)+(x+11)+(x+14)=75
=>(x+x+x+x+x)+(2+5+8+11+14)=75
=>Xx5+40=75
=>Xx5=75-40
=>Xx5=35
=>x=35:5
=>x=7
tìm x
\(\dfrac{x-11}{101}-\dfrac{x-13}{103}=\dfrac{x-17}{107}-\dfrac{x-19}{109}\)
\(\dfrac{x-1}{101}-\dfrac{x-13}{103}=\dfrac{x-17}{107}-\dfrac{x-19}{109}\)
\(\Rightarrow\left(\dfrac{x-11}{101}+1\right)-\left(\dfrac{x-13}{103}+1\right)=\left(\dfrac{x-17}{107}+1\right)-\left(\dfrac{x-19}{109}+1\right)\)
\(\Rightarrow\dfrac{x+90}{101}-\dfrac{x+90}{103}=\dfrac{x+90}{107}-\dfrac{x+90}{109}\)
\(\Rightarrow\dfrac{x+90}{101}-\dfrac{x+90}{103}-\dfrac{x+90}{107}+\dfrac{x+90}{109}=0\)
\(\Rightarrow\left(x+90\right)\left(\dfrac{1}{101}-\dfrac{1}{103}-\dfrac{1}{107}+\dfrac{1}{109}\right)=0\)
Vì \(\dfrac{1}{101}-\dfrac{1}{103}-\dfrac{1}{107}+\dfrac{1}{109}\ne0\)
Nên \(x+90=0\Rightarrow x=-90\)
a,tìm số nguyên x và y biết:xy-x+2y=3
b,.So sánh M và N biết rằng:
\(M=\frac{101^{102}+1}{101^{103}+1};N=\frac{101^{103}+1}{101^{104}+1}\)
xy - x + 2y = 3
=> x(y-1) + 2y - 2 = 3 + 2
=> x(y-1) + 2(y-1) = 5
=> (x+2)(y+1) = 5
=> x + 2 và y + 1 \(\in\)Ư(5) = {-1;5;-5;1}
ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
y+1 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -6 | -2 | 4 | 0 |