Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Đăng Khoa
Xem chi tiết
Đỗ Đăng Khoa
13 tháng 10 2023 lúc 21:33

huhuhuhu help me cứi tui

Linh
Xem chi tiết
Thanh Tùng DZ
26 tháng 5 2017 lúc 6:50

1.

| x + 2 | = | 2 - 3x |

xét 2 trường hợp :

+) TH1 :

2 - 3x = x + 2

-3x + x = 2 + 2

2x = 4

x = 4 : 2 = 2

+) TH2 : 

2 - 3x = - ( x + 2 )

2 - 3x = -x - 2

-3x - x = 2 - 2

-4x = 0

x = 0 : ( -4 )

x = 0

bài còn lại tương tự

VuongNgocDuong
10 tháng 10 2019 lúc 14:15

tìm x,biết:(x^2-3)^2=16

Lương Bảo Trân
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 14:45

Bài 1:

Ta có: \(4-2\left(x+1\right)=2\)

\(\Leftrightarrow2\left(x+1\right)=2\)

\(\Leftrightarrow x+1=1\)

hay x=0

Bài 2: 

Ta có: \(\left|2x-3\right|-1=2\)

\(\Leftrightarrow\left|2x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Đậu Phạm Nhật Nguyên
24 tháng 4 2022 lúc 15:44

chưa biết

abc123
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 21:13

\(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Liah Nguyen
21 tháng 10 2021 lúc 21:13

x2.(x2 + 4) - x2 - 4=0

⇒ x2.(x2 + 4) - (x2 + 4) =0

⇒ (x2 + 4) .(x2 - 1) = 0

\(\Rightarrow\left[{}\begin{matrix}x^2+4=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=-4\\x^2=1\end{matrix}\right.\)(loại do x2 ≥ 0) \(\Rightarrow x=\pm1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2019 lúc 7:03

Với |x + 1| ≥ 0, |x + 4| ≥ 0 với mọi x nên |x + 1| + |x + 4|

Suy ra: 3x ≥ 0 hay x ≥ 0.

Với x ≥ 0 ta có: x+ 1 > 0 và x + 4 > 0 nên |x + 1| = x + 1 và |x + 4| = x + 4

Ta có: x + 1 + x + 4 = 3x

     2x + 5 = 3x

             5 = 3x – 2x

             5 = x hay x= 5

Vậy x = 5.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 10:45

* Xét x < 1 thì x - 1 < 0 và x – 4 < 0 nên:

|x - 1| = 1 - x; |x - 4| = 4 - x

Ta có: 1 - x + 4 - x = 3x

1 + 4 = 3x + x+ x

       5 = 5x

       5x = 5

         x = 1 (không thỏa mãn điều kiện x< 1).

* Xét 1 ≤ x < 4 thì x – 1 ≥ 0 và x – 4 < 0 nên:

|x - 1| = x - 1; |x - 4| = 4 - x

Ta có: x – 1 + 4 – x = 3x

       3 = 3x

       3x = 3

         x = 3: 3

          x = 1( thỏa mãn điều kiện)

* Nếu x ≥ 4 thì x – 1 > 0 và x – 4 ≥ 0 nên:

|x - 1| = x - 1; |x - 4| = x - 4

Ta có: x - 1 + x - 4 = 3x

   2x – 5 = 3x

       - 5 = 3x – 2x

       - 5 = x

          x = - 5 ( không thỏa mãn điều kiện)

Vậy x = 1

Toán Hình THCS
Xem chi tiết
Aug.21
28 tháng 6 2019 lúc 8:02

Vì vế trái \(|x\left(x-4\right)|\ge0\forall x\)nên vế phải \(x\ge0\)

Ta có :\(x|x-4|=x\left(x\ge0\right)\)

Nếu x = 0 thì \(0|0-4|=0\)( đúng)

Nếu \(x\ne0\)thì ta có:

\(|x-4|=1\Leftrightarrow x-4=\pm1\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}\left(TM\right)}\)

Vậy x = 0, x = 5, x = 3

 

KAl(SO4)2·12H2O
28 tháng 6 2019 lúc 8:05

|x(x - 4)| = x

<=> |x2 - 4x| = x

Xét 2 trường hợp:

TH1: x2 - 4x = x

<=> x2 - 4x - x = 0

<=> x2 - 5x = 0

<=> x(x - 5) = 0

<=> x = 0 hoặc x - 5 = 0

                         x      = 0 + 5

                         x      = 5

=> x = 0 hoặc x = 5

TH2: x2 - 4x = -x

<=> x2 - 4x - (-x) = 0

<=> x2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

                         x      = 0 + 3 

                         x      = 3

=> x = 0 hoặc x = 3

Vậy: x = 0 hoặc x = 5 hoặc x = 3

nguyễn tuấn thảo
28 tháng 6 2019 lúc 8:06

\(\left|\times\left(\times-4\right)\right|=\times\)

\(\Rightarrow\times\ge0;\hept{\begin{cases}\times\left(\times-4\right)=\times\\\times\left(\times-4\right)=-\times\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\times-4=1\\\times-4=-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\times=5\\\times=3\end{cases}}\)

Đinh Anh
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
Vũ Quang Vinh
4 tháng 9 2016 lúc 10:47

Từ đề bài, ta có các trường hợp sau:
TH1: Cả 3 thừa số đều dương:
Khi đó biểu thức trở thành:
\(\left(x-2\right)+\left(x-3\right)+\left(x-4\right)=2\)
\(\Rightarrow\left(x+x+x\right)-\left(2+3+4\right)=2\)
\(\Rightarrow3x-9=2\)
\(\Rightarrow3x=11\)
\(\Rightarrow x=\frac{11}{3}\)
Do \(\frac{11}{3}-4=-\frac{1}{3}< 0\) ( mâu thuẫn với điều kiện các thừa số đều dương ) nên ta loại.