Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 ≥ 1 + m x 2 ≥ 1 ≥ 6 x ≥ 1 - 0 đúng với mọi x ∈ R . Tổng giá trị của tất cả các phân tử thuộc S bằng
A. - 3 2
B. 1
C. - 1 2
D. 1 2
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 16 + m x 2 - 4 - 28 x - 2 ≥ 0 đúng với mọi x ∈ R . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. - 15 8
B. - 1
C. - 1 8
D. 7 8
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2(x4 - 1) + m(x2 - 1) - 6(x - 1) ≥ 0 đúng với mọi x ∈ R. Tổng giá trị của tất cả các phần tử thuộc S bằng bao nhiêu ?
Lời giải:
$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$
Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ
$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$
$\Rightarrow h(1)=0$
$\Leftrightarrow 4m^2+2m-6=0$
$\Leftrightarrow 2m^2+m-3=0$
$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$
Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$
Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 1 + m x 2 - 1 - 6 x - 1 ≥ 0 đúng với mọi x ∈ R . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. - 3 2
B. 1
C. - 1 2
D. 1 2
Nhận xét: Nếu x = 1 không là nghiệm của phương trình (1) thì x = 1 là nghiệm đơn của phương trình f(x) = 0 nên f(x) đổi dấu khi qua nghiệm x = 1.
Chọn C
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 1 + m x 2 - 1 - 6 x - 1 ≥ 0 đúng với mọi x ∈ ℝ . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. 3 2 .
B. 1.
C. - 1 2 .
D. 1 2 .
1.Bất phương trình (m2-3m)x+m<2-2x vô nghiệm khi:
a.m#1 b.m#2 c.m=2 d.=3
2.Gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2-m)x +m<6x-2
GIUP MÌNH VỚI Ạ
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn [-10;10] để bất phương trình log 3 2 x 2 + x + m + 1 x 2 + x + 1 ≥ 2 x 2 + 4 x + 5 - 2 m có nghiệm. Số phần tử của tập hợp S bằng
A. 20
B. 10
C. 15
D. 5
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 1 + m x 2 - 1 - 6 x - 1 ≥ 0 đúng với mọi xÎ ℝ . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. - 3 2
B. 1
C. - 1 2
D. 1 2
Cho phương trình (m+1)sinx + mcosx = 2m-1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình có nghiệm. Tính tổng tất cả các phần tử của S.
Cho phương trình (m+1)sinx+m cosx=2m-1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình có nghiệm. Tính tổng tất cả các phần tử của S.
A.-2.
B. 6.
C.2.
D. -6