Tính diện tích hình phẳng giới hạn bởi các đường sau: y = 2x – x 2 , x + y = 2
Tính diện tích hình phẳng giới hạn bởi các đường sau: y = xsin2x, y = 2x, x = π 2
A. π 2 4 - 4
B. π 2 - π
C. π 2 4 - π 4
D. π 2 4 + π 4
/
Chọn C.
Phương trình hoành độ giao điểm: x sin 2x = 2x <=> x (sin2x-2) = 0 <=> x = 0 hoặc sin2x = 2 (VN)
Tính diện tích hình phẳng giới hạn bởi các đường y = x 3 − 2 x ; y = x − 2 về phía bên trái trục tung.
A. 3 4
B. 4 π 3
C. 6
D. 27 4
Tính diện tích miền hình phẳng giới hạn bởi các đường y = x 2 - 2 x , y = 0 , x = - 10 , x = 10
A. S=2000/3
B. S=2008
C. S=2008/3
D. 2000
Diện tích hình phẳng được giới hạn bởi các đường y = 2 x - x 2 và đường thẳng x + y = 2 là:
A. 1 6 d v t t
B. 5 2 d v t t
C. 6 5 d v t t
D. 1 2 d v t t
Chọn A.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = 2x - x2 và x + y = 2 là :
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = 2 x - 1 2 , trục hoành và các đường thẳng x = 2 và x = 8.
A. 12 7
B. 9
C. 12
D. 10
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Tính diện tích hình phẳng giới hạn bởi các đường sau: x + y = 1, x + y = -1, x – y = 1, x – y = -1
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x),y=0,x=0,x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0,x=a bằng
A. S/4.
B. 4S.
C. 2S.
D. S/2.