Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Thùy
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 8:38

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

Akai Haruma
11 tháng 9 2021 lúc 8:44

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

Vũ khang
Xem chi tiết
⭐Hannie⭐
11 tháng 5 2023 lúc 20:24

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 6 2019 lúc 12:53

Ta có 

g ' ( x ) =    ( ​ 2 x + ​ 3 ) . ( x − 2 ) − 1. ( x 2 + ​ 3 x − 9 ) ( x − 2 ) 2 = x 2 − 4 x + 3 ( x − 2 ) 2

Mà  g ' ( x ) ≤ 0

⇔ x 2 − 4 x + 3 ≤ 0 x − 2 ≠ 0 ⇔ 1 ≤ x ≤ 3 x ≠ 2 ⇔ x ∈ 1 ; 3 \ 2

Vậy tập nghiệm bất phương trình là: S=[1 ; 3]\{2}

Chọn đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2017 lúc 8:15

(−∞; 0) ∪ (1; +∞).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2017 lúc 17:49

Vô nghiệm.

Uyên Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2018 lúc 10:20

Đáp án B

Ta có:

f ' x = 2 x 3 + x − 2 / = 6 x 2 + 1

g ' x = 3 x 2 + x + 2 / = 6 x + 1

f ' x > g ' x ⇔ 6 x 2 + 1 > 6 x + 1 ⇔ 6 x 2 − 6 x > 0 ⇔ x ∈ − ∞ ; 0 ∪ 1 ; + ∞

 

Huyền Trân
Xem chi tiết
ミ★kͥ-yͣeͫt★彡
18 tháng 9 2019 lúc 20:20

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(ĐKXĐ:x\ne\pm2\)

\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)

\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)

\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)

Vậy pt có 2 nghiệm là 1 và -1

Kudo Shinichi
18 tháng 9 2019 lúc 20:26

Điều kện :  \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)

( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)

Chúc bạn học tốt !!!

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2017 lúc 5:58

(x – 3)(x + 3) < (x + 2)2 + 3

⇔ x2 – 9 < x2 + 4x + 4 + 3

⇔ x2 – x2 - 4x < 4+ 3 + 9 (Chuyển vế và đổi dấu các hạng tử)

⇔ - 4x < 16

⇔ x > -4 (Chia cả hai vế cho -4 < 0, BPT đổi chiều).

Vậy BPT có nghiệm x > -4.

Nguyễn Đình Khánh Duẩn
Xem chi tiết

\(\left(x-3\right)\left(x+3\right)< \left(x-2\right)^2+3\)

=>\(x^2-9< x^2-4x+4+3\)

=>\(-4x+7>-9\)

=>-4x>-9-7=-16

=>4x<16

=>x<16/4=4