Cho a,b lẻ. CMR 2a2+3b2 không chính phương.
Cần gấp ạ
phân tích đa thức thành nhân tử :
a) 2a2+5ab-3b2-7b-2
b)2x2-7xy+x+3y2-3y
mong a chị chỉ giúp e ạ
b: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
Lời giải:
a.
Đặt $2a^2+5ab-3b^2-7b-2=(a+mb+n)(2a+pb+k)$ với $m,n,p,k$ nguyên
$\Leftrightarrow 2a^2+5ab-3b^2-7b-2=2a^2+ab(2m+p)+mpb^2+a(k+2n)+b(km+np)+kn$
Đồng nhất hệ số:
\(\left\{\begin{matrix} 2m+p=5\\ mp=-3\\ k+2n=0\\ km+np=-7\\ kn=-2\end{matrix}\right.\)
Giải hpt này ta thu được $m=3; n=1; p=-1; k=-2$
Vậy $2a^2+5ab-3b^2-7b-2=(a+3b+1)(2a-b-2)$
b. Đa thức không phân tích được thành nhân tử
phân tích đa thức thành nhân tử :
a) 2a2+5ab-3b2-7b-2
b)2x2-7xy+x+3y2-3y
mong a chị chỉ giúp e ạ
b: Ta có: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
NHỜ CÁC BẠN GIÚP MÌNH VỚI Ạ,MÌNH ĐANG CẦN GẤP, MÌNHCẢM ƠN NHIỀU
Cho a; b là 2 số nguyên cùng tính chẵn lẻ, CMR: ab là hiệu của 2 số chính phương
(a+b)2-(a-b)2=4ab=>ab = \(\left(\dfrac{a+b}{2}\right)^2\)-\(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là hiệu 2 số chính phương vì a≡b(mod 2) => a+b và a-b chia hết cho 2 nên \(\left(\dfrac{a+b}{2}\right)^2\) và \(\left(\dfrac{a-b}{2}\right)^{2^{ }}\)là 2 số tự nhiên
CMR:
a)Tổng của 4 số chính phương lẻ có thể là số chính phương
b)Tổng của 5 số chính phương lẻ không thể là số chính phương
Làm giúp mk. đúng mk tích cho
Cái tội lười làm bài tập nó thế đấy! Me, too!
Cho a,b là các stn lẻ. CMR : a mũ 2 + b mũ 2 không phải là số chính phương
Bài 1: Thực hiện phép tính
a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4);
b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b);
c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3);
d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b)
e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
Bµi 2. Viết các biểu thức sau dưới dạng đa thức
a) (2a - b)(b + 4a) + 2a(b - 3a);
b) (3a - 2b)(2a - 3b) - 6a(a - b);
c) 5b(2x - b) - (8b - x)(2x - b);
d) 2x(a + 15x) + (x - 6a)(5a + 2x);
Bài 3: Chứng minh rằng các biểu thức sau không phụ thuộc vào biến
a) (y - 5)(y + 8) - (y + 4)(y - 1); b) y4 - (y2 - 1)(y2 + 1);
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
Cho biểu thức A = a3+2a2−1a3+2a2+2a+1a3+2a2−1a3+2a2+2a+1
a) Rút gọn biểu thức.
b) CMR nếu a nguyên thì A tối giản.
CMR:
a) Tổng của 4 số chính phương lẻ có thể là 1 số chinh phương
b) Tổng của 5 số chính phương lẻ không thể là 1 số chính phương
cho a,b lẻ ; a,b thuộc N sao
CMR : a2+b2 không thể là số chính phương