Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The Moon
Xem chi tiết
The Moon
20 tháng 8 2021 lúc 17:54

GẤP LẮM Ạ,NGAY BÂY GIỜ Ạ

Đỗ Vũ Nhật Anh
Xem chi tiết
Duy Nghĩa Hoàng
15 tháng 11 2021 lúc 21:58

Giống mình làm

 

Bà HOÀng Thả ThÍnh
Xem chi tiết
Dương Mạnh Quyết
21 tháng 12 2021 lúc 10:21

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

Khách vãng lai đã xóa
Lưu Nguyễn Hà An
15 tháng 2 2022 lúc 9:04

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Trần Thị Thu Mến
31 tháng 10 2024 lúc 18:47

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

 

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

 

Bài 3:

 

*Xét tam giác ABC, có:

 

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

 

hay góc A+60 độ +40 độ=180độ

 

  => góc A= 180 độ-60 độ-40 độ.

 

  => góc A=80 độ

 

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

 

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

Hoangg Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 18:48

a: A(3;1); B(2;6); C(4;-1)

\(AB=\sqrt{\left(2-3\right)^2+\left(6-1\right)^2}=\sqrt{5^2+1^2}=\sqrt{26}\)

\(AC=\sqrt{\left(4-3\right)^2+\left(-1-1\right)^2}=\sqrt{2^2+1^2}=\sqrt{5}\)

\(BC=\sqrt{\left(4-2\right)^2+\left(-1-6\right)^2}=\sqrt{2^2+7^2}=\sqrt{53}\)

Chu vi tam giác ABC là:

\(C_{ABC}=\sqrt{26}+\sqrt{5}+\sqrt{53}\left(đvđd\right)\)

b: Xét ΔABC có 

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{26+5-53}{2\cdot\sqrt{26\cdot5}}\simeq-0,96\)

=>\(\widehat{A}\simeq165^0\)

c: Gọi H(x,y) là trực tâm của ΔABC

\(\overrightarrow{AH}=\left(x-3;y-1\right)\)

\(\overrightarrow{BH}=\left(x-2;y-6\right)\)

\(\overrightarrow{BC}=\left(2;-7\right);\overrightarrow{AC}=\left(1;-2\right)\)

H là trực tâm nên ta có: AH\(\perp\)BC và BH\(\perp\)AC

=>\(\left\{{}\begin{matrix}\overrightarrow{AH}\cdot\overrightarrow{BC}=0\\\overrightarrow{BH}\cdot\overrightarrow{AC}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\left(x-3\right)+\left(-7\right)\left(y-1\right)=0\\1\left(x-2\right)+\left(-2\right)\left(y-6\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-6-7y+7=0\\x-2-2y+12=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-7y=-1\\x-2y=-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-7y=-1\\2x-4y=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-1+20=19\\x-2y=-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{19}{3}\\x=-10+2y=-10-\dfrac{38}{3}=-\dfrac{68}{3}\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 10 2018 lúc 6:32

Đáp án C

Ta có: 

Từ điểm D kẻ đường thẳng song song với AC, cắt cạnh AB tại điểm E. Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại F. Do AD là đường phân giác trong của tam giác ABC nên ta suy ra AEDF là hình thoi.

 

Đặt AE=AF=k. Ta có:

là một vectơ chỉ phương của đường thẳng AD. Từ đó suy ra C là khẳng định đúng.

Ta cũng lưu ý rằng khẳng định A sai, do tam giác ABC không cân tại đỉnh A.

 

Rinn
Xem chi tiết
HT.Phong (9A5)
19 tháng 10 2023 lúc 19:23

Câu 1:

Chú ý độ dài 3 cạnh của tam giác là sai thì \(a+b=7=c\) 

Nếu là cạnh của tam giác thì: \(\left\{{}\begin{matrix}a+b>c\\a+c>b\\c+b>a\end{matrix}\right.\) 

Câu 2: Ta có: 

\(m_a=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{AC^2+AB^2}{2}-\dfrac{BC^2}{4}}\)

\(\Rightarrow m_a=\sqrt{\dfrac{9^2+4^2}{2}-\dfrac{6^2}{4}}\)

\(\Rightarrow m_a\approx6,3\) 

Ta có: \(p=\dfrac{AB+AC+BC}{2}=\dfrac{4+6+9}{2}=\dfrac{19}{2}\)

\(\Rightarrow S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{\dfrac{19}{2}\cdot\left(\dfrac{19}{2}-6\right)\cdot\left(\dfrac{19}{2}-9\right)\cdot\left(\dfrac{19}{2}-4\right)}\approx9,5\) 

\(\Rightarrow h_b=2\cdot\dfrac{S_{ABC}}{b}\Rightarrow h_b=2\cdot\dfrac{9,5}{9}\approx2,1\) 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2018 lúc 17:34

Ta có:  a2 + b2 = c2 nên tam giác ABC là tam giác vuông.

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2017 lúc 5:43

Diện tích tam  giác ABC là: 

S ​ = 1 2 A B . A C . sin A = 1 2 .4.6. sin 30 0 = 6

ĐÁP ÁN B

anh tuấn
Xem chi tiết
Phương Thảo
Xem chi tiết
Trịnh Việt Dũng
15 tháng 6 2022 lúc 20:29

chịu hoi =))))))

 

Trịnh Việt Dũng
15 tháng 6 2022 lúc 20:29

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

Nguyễn Thảo My
14 tháng 1 2023 lúc 21:25

1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)

\(\Leftrightarrow\sin A=0,8\)

Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)

Áp dụng định lí hàm số cosin:

\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)

\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)

\(\Leftrightarrow BC=\sqrt{17}.\)

2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)

=> BAC=75o.

Áp dụng định lí hàm số sin:

\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)

\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).