Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 1 2018 lúc 18:10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2019 lúc 7:15

Bảo Long Hà
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2018 lúc 14:46

Giải bài tập Toán 11 | Giải Toán lớp 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2019 lúc 5:56

2n + 1 > 2n + 3 (2)

+ Với n = 2 thì (2) ⇔ 8 > 7 (luôn đúng).

+ Giả sử (2) đúng khi n = k ≥ 2, nghĩa là 2k+1 > 2k + 3.

Ta chứng minh đúng với n= k+ 1 tức là chứng minh: 2k+2 > 2(k+ 1)+ 3

Thật vậy, ta có:

2k + 2 = 2.2k + 1

> 2.(2k + 3) = 4k + 6 = 2k + 2 + 2k + 4.

> 2k + 2 + 3 = 2.(k + 1) + 3 ( Vì 2k + 4 >3 với mọi k ≥ 2)

⇒ (2) đúng với n = k + 1.

Vậy 2n + 1 > 2n + 3 với mọi n ≥ 2.

Bae Sooji
Xem chi tiết
Trần Gia Huy
25 tháng 7 2019 lúc 15:30

\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

=> \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)(1)

\(\frac{1}{2\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)=> \(\frac{1}{2\sqrt{n}}>\sqrt{n+1}-\sqrt{n}\)(2)

Từ (1) và (2) => \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}\)

Nguyễn Văn Hoàng
Xem chi tiết
Blue Moon
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Akai Haruma
27 tháng 2 2018 lúc 0:57

Lời giải:

Tổng trên gồm \([2n-(n+1)]:1+1=n\)\([2n-(n+1)]:1+1=n\)
số hạng

Mỗi số hạng đứng trước \(\frac{1}{2n}\) đều lớn hơn hoặc bằng nó do \(n+1, n+2,....,2n-1\leq 2n\forall n\in\mathbb{N}^*\) thì \(\frac{1}{n+1}, \frac{1}{n+2},..., \frac{1}{2n-1}\geq \frac{1}{2n}\)

Suy ra:

\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq \underbrace{\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}}_{ \text{n lần}}=\frac{n}{2n}=\frac{1}{2}\) (đpcm)

Dấu bằng xảy ra khi \(n=1\)