Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn long
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 11:46

\(f\left(x\right)=e^{sinx}-sinx-1\)

\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)

\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)

\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 3 2017 lúc 2:27

Ta có bảng biến thiên như hình vẽ sau:

Giá trị nhỏ nhất của hàm số là f( b)  nhưng giá trị lớn nhất có thể là f (a) hoặc f( e)  Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d)   nên f(a) - f( d)) = f( b) - f(  c)< 0

Suy ra : f( a) < f( d) < f( e)  

Vậy  m a x [ a ; e ]   f ( x ) = f ( e ) ;   m i n [ a ; e ]   f ( x ) = f ( b )

Chọn  C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 7 2018 lúc 3:07

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 3 2017 lúc 11:32

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2017 lúc 9:36

Quan sát đồ thị có 

Chọn đáp án B

Bình Trần Thị
Xem chi tiết
Nguyễn Thái Bình
9 tháng 12 2015 lúc 8:56

f(x) = -x2 + 2x + 15

Đồ thị hàm số là parabol quay xuống dưới, đỉnh parabol tại điểm (1,16), parabol cắt trục hoành tại 2 điểm có hoành độ là -3 và 5 (bạn tự vẽ hình)

Nhìn vào đồ thị suy ra giá trị lớn nhất của f(x) trong [-3,5] là 16 (khi x = 1) và giá trị nhỏ nhất là 0 (khi x = -3 hoặc x=5)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2019 lúc 17:47

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

Quỳnh Anh
Xem chi tiết
Nguyễn Ngọc Lộc
3 tháng 2 2021 lúc 20:29

ĐKXĐ : \(-1\le x\le3\)

- ADbu nhi : \(\left(\sqrt{x+1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(\left(\sqrt{x+1}\right)^2+\left(\sqrt{3-x}\right)^2\right)\)

\(=2\left(x+1+3-x\right)=2.4=8\)

\(\Rightarrow\sqrt{x+1}+\sqrt{3-x}\le\sqrt{8}=2\sqrt{2}\)

- Dấu " = " xảy ra \(\Leftrightarrow\dfrac{1}{\sqrt{x+1}}=\dfrac{1}{\sqrt{3-x}}\)

\(\Leftrightarrow x+1=3-x\)

\(\Leftrightarrow x=1\left(TM\right)\)

\(\Rightarrow Max_{f\left(x\right)}=2\sqrt{2}\) tại x = 1.

- Có : \(\sqrt{x+1}+\sqrt{3-x}\ge\sqrt{x+1+3-x}=\sqrt{4}=2\)

- Dấu " = " xảy ra <=> x = -1 ( TM )

\(\Rightarrow Min_{f\left(x\right)}=2\) tại x = - 1 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2017 lúc 11:42

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 9 2019 lúc 10:14

Nhận thấy trên đoạn [-2;2]

● Đồ thị hàm số có điểm thấp nhất có tọa độ (-2;-5) và (1;-5)

=> giá trị nhỏ nhất của hàm số này trên đoạn [-2;2] bằng - 5

● Đồ thị hàm số có điểm cao nhất có tọa độ (-1;1) và (-2;1)

 => giá trị lớn nhất của hàm số này trên đoạn [-2;2] bằng -1.

Chọn B.