Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 9 2018 lúc 15:10

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.

Mèo Méo
Xem chi tiết
𝓗â𝓷𝓷𝓷
25 tháng 2 2023 lúc 23:02

C

Sách Giáo Khoa
Xem chi tiết
Quang Duy
31 tháng 3 2017 lúc 16:28

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 11:01

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2017 lúc 14:19

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2017 lúc 12:13

Đáp án A

(1) Sai vì ( α ) // a ( β ) // a ( α ) ∩ ( β ) = d ⇒ a / / d tức là có trường hợp chúng cắt nhau.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 11 2019 lúc 16:43

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2018 lúc 12:44

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

f) Đúng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2018 lúc 13:27

Đáp án D

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:46

a)

loading...

Cho hai mặt phẳng \(\left( P \right),\left( Q \right)\) song song với nhau và đường thẳng \(a\) vuông góc với \(\left( P \right)\). Ta cần chứng minh \(a \bot \left( Q \right)\).

Trên \(\left( P \right)\) lấy hai đường thẳng \(b,c\) cắt nhau, trên \(\left( Q \right)\) lấy hai đường thẳng \(b',c'\) sao cho \(b'\parallel b,c'\parallel c\).

Vì \(b,c\) cắt nhau nên \(b',c'\) cắt nhau.

\(\begin{array}{l}\left. \begin{array}{l}a \bot \left( P \right) \Rightarrow a \bot b,a \bot c\\b\parallel b',c\parallel c'\end{array} \right\} \Rightarrow a \bot b',a \bot c'\\ \Rightarrow a \bot \left( Q \right)\end{array}\)

Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:46

b)

loading...

Cho hai mặt phẳng \(\left( P \right),\left( Q \right)\) cùng vuông góc với mặt phẳng \(\left( R \right)\). Ta cần chứng minh \(\left( P \right)\parallel \left( Q \right)\) hoặc \(d \bot \left( R \right)\) với \(d = \left( P \right) \cap \left( Q \right)\).

Vì \(\left( P \right) \bot \left( R \right)\) nên tồn tại đường thẳng \(a \subset \left( P \right)\) sao cho \(a \bot \left( R \right)\), \(\left( Q \right) \bot \left( R \right)\) nên tồn tại đường thẳng \(b \subset \left( Q \right)\) sao cho \(b \bot \left( R \right)\)

\( \Rightarrow a\parallel b\)

Vậy \(\left( P \right)\parallel \left( Q \right)\) hoặc nếu \(\left( P \right),\left( Q \right)\) cắt nhau theo giao tuyến \(d\) thì \(d\parallel a \Rightarrow d \bot \left( R \right)\).