Chứng tỏ rằng z - 1 z + 1 là số thực khi và chỉ khi z là một số thực khác – 1.
Cho hai tập hợp
A = {3k + 1| k ∈ Z}
B = {6m + 4| m ∈ Z}
Chứng tỏ rằng B ⊂ A
Giả sử x ∈ B, x = 6m + 4, m ∈ Z. Khi đó ta có thể viết x = 3(2m + 1) + 1
Đặt k = 2m + 1 thì k ∈ Z vào ta có x = 3k + 1, suy ra x ∈ A
Như vậy x ∈ B ⇒ x ∈ A
hay B ⊂ A
a, Chứng tỏ rằng (7^n + 1) . (7^n + 2) chia hết cho 3 và mọi số tự nhiên
b, Chứng tỏ rằng không tồn tại các số tự nhiên x,y,z sao cho : (x+y) . (y+z) . (z+x) + 2016 = 2017^2018
a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3
Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )
=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N
Tk mk nha
b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2
=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)
Mà 20172018 không chia hết cho 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài
a, Chứng tỏ rằng (7^n + 1) . (7^n + 2) chia hết cho 3 và mọi số tự nhiên
b, Chứng tỏ rằng không tồn tại các số tự nhiên x,y,z sao cho : (x+y) . (y+z) . (z+x) + 2016 = 2017^2018
chứng tỏ rằng nếu : (1- x)2+ (x-y)2 +(y-z)2 = 0, thì x=y=z=1
Đúng thì like phát nha
Vì (1-x)2 >=0; (x-y)2 >=0; (y-z)2 >=0
Mặt khác (1-x)2+(x-y)2+(y-z)2=0
=> (1-x)2=0 => 1-x=0
(x-y)2=0 x-y=0
(y-z)2=0 y-z=0
=> x=1
y=x
z=y
=>x=y=z=1
Vậy x=y=z=1
Ta có :
\(\left(1-x\right)^2\ge0\forall x\)
\(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y-z\right)^2\ge0\forall y;z\)
\(\Rightarrow\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2\ge0\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)
Chứng tỏ rằng \(\dfrac{z-1}{z+1}\) là số thực khi và chỉ khi \(z\) là một số thực khác -1 ?
Hiển nhiên nếu \(z\in\mathbb{R},z\ne-1\) thì \(\dfrac{z-1}{z+1}\in\mathbb{R}\)
Ngược lại, nếu \(\dfrac{z-1}{z+1}=a\in\mathbb{R}\) thì \(z-1=az+a\) và \(a\ne1\)
Suy ra \(\left(1-a\right)z=a+1\Rightarrow\)\(z=\dfrac{a+1}{1-a}\in\mathbb{R}\) và hiển nhiên \(z\ne-1\)
Chứng tỏ rằng (n-1)n(n+1)chia hết cho 3 với mọi n thuộc Z
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
Chứng tỏ rằng (n-1)n(n+1)chia hết cho 3 với mọi n thuộc Z
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
chứng tỏ rằng:3n/3n+1(n thuộc Z)là phân số tối giản
3n và 3n+1 là 2 số nguyên liên tiếp nên phân số 3n/3n+1 là ps tối giản
Chứng tỏ rằng
1) n(n+1)(n+5) chia hết 3 t/n Z
+ Nếu n = 3k thì n chia hết cho 3 => n(n + 1).(n + 5) chia hết cho 3
+ Nếu n = 3k + 1 thì n + 5 chia hết cho 3 => n(n + 1)(n + 5) chia hết cho 3
+ Nếu n = 3k + 2 thì n + 1 chia hết cho 3 => n(n + 1)(n + 5) chia hết cho 3
Chứng tỏ n(n + 1)(n + 5) chia hết cho 3 với mọi n thuộc Z
n (n + 1) (n + 5)
= 3n + 6
Vì 3n chia hết cho 3; 6 chia hết cho 3
Nên 3n + 6 chia hết cho 3
Vậy n (n + 1) (n + 5)