Chứng minh rằng sin 2(x + kπ) = sin 2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y = sin 2x
cho hàm số y = f(x) = 2\(\sin\)2x .
a) chứng minh rằng với số nguyên k tùy ý , luôn có f(x + k\(\pi\)) = f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = 2\(\sin\)2x trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
c) vẽ đồ thị của hàm số y = 2\(\sin\)2x .
Cho hàm số y = cos 2 x .
a) Chứng minh rằng cos 2 x + k π = cos 2 x với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số y = cos 2 x .
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π / 3 .
c) Tìm tập xác định của hàm số : z = 1 - cos 2 x 1 + cos 2 2 x
a) + Hàm số y = cos x có chu kì 2π.
Do đó: cos 2.(x + kπ) = cos (2x + k2π) = cos 2x.
⇒ Hàm số y = cos 2x cũng tuần hoàn với chu kì π.
Từ đó suy ra
b. y = f(x) = cos 2x
⇒ y’ = f’(x) = (cos 2x)’ = -(2x)’.sin 2x = -2.sin 2x.
⇒ Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π/3 là:
c. Ta có: 1 – cos 2x = 2.sin2x ≥ 0.
Và 1 + cos22x > 0; ∀ x
⇒ luôn xác định với mọi x ∈ R.
cho hàm số y = f(x) = 2\(\sin\)2x .
a) chứng minh rằng với số nguyên k tùy ý , luôn có f(x + k\(\pi\)) = f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = 2\(\sin\)2x trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\).
c) vẽ đồ thị của hàm số y = 2\(\sin\)2x .
a)y=2sin2x=4sinxcosx
F(x+kπ)=4.(-1)^k.sinx.(-1)^k.cosx=4.sinx.cosx=f(x)
Chứng minh rằng cos2(x + kπ) = cos2x, k ∈ Z. Từ đó vẽ đồ thị hàm số y = cos2x
Từ đồ thị hàm số y = cos2x, hãy vẽ đồ thị hàm số y = |cos2x|
cos2(x + kπ) = cos(2x + k2π) = cos2x, k ∈ Z.
Vậy hàm số y = cos 2x là hàm số chẵn, tuần hoàn, có chu kì là π.
Đồ thị hàm số y = cos2x
Đồ thị hàm số y = |cos2x|
Trong các hàm số y = tan x ; y = sin 2 x ; y = sin x ; y = c o t x có bao nhiêu hàm số thỏa mãn tính chất f x + k π = f x ; ∀ x ∈ ℝ ; k ∈ ℤ
A. 3
B. 2
C. 1
D. 4
Đáp án C
Hàm số y = sin 2x thỏa mãn tính chất trên, các hàm số y = tan x, y = cot x cần điều kiện của x.
xét hàm số y = f(x) = \(\sin\pi x\)
a) chứng minh rằng vưới mọi số nguyên chẵn m ta có f(x+m)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số trên khoảng \(\left[-1;1\right]\)
c) vẽ đồ thị của hàm số đó
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)