Cho tam giác ABC có góc B tù và H là chân đường cao của tam giác hạ từ đỉnh A. Cặp vectơ nào sau đây cùng hướng?
A. B H → , C H →
B. B H → , B C →
C. B H → , H C →
D. C H → , H B →
Cho tam giác ABC,H là chân đường cao hạ từ đỉnh A (H nằm giữa B và C) và biết góc BAH > và góc CAH. Hãy so sánh độ dài các cạnh AB và AC của tam giác ABC.
Cho tam giác ABC,H là chân đường cao hạ từ đỉnh A (H nằm giữa B và C) và biết góc BAH > và góc CAH. Hãy so sánh độ dài các cạnh AB và AC của tam giác ABC.
Ai nhanh mk k cho nha❤
Ta có góc AHB=góc CHA=90*.Và góc BAH>góc HAC
=>góc ACH>góc ABH (tổng 3 góc trong tam giác)
=>AB>AC (cạnh đối diện của góc lớn hơn lớn hơn cạnh đối diện của góc nhỏ hơn)
Quân Nguyễn Hữu
❤Mình cảm ơn bạn nhìu nha^^
Cho tam giác nhọn ABC có trực tâm H và góc BAC =60 độ. Gọi M,N,P lần lượt là chân đường cao hạ từ các đỉnh A,B,C của tam giác ABC và I là trung điểm của BC.
a) chứng minh tam giác NIP đều
b) Giả sử IA là phân giác của góc NIP. Tính số đo của góc BCP
e làm chứng minh dc góc NPI = BAC=60 độ, thế e ghi tương tự vs góc PNI=BAC=60 độ dc k ạ
Cho một điện trường đều có cường độ 4 . 10 3 V/m. Vectơ cường độ điện trường song song với cạnh BC của tam giác vuông ABC và có chiều từ B đến C. Cho biết AB=6cm, AC=8cm. Gọi H là chân đường cao hạ từ đỉnh A xuống cạnh huyền. Hiệu điện thế giữa hai điểm BC,AB,AC và AH lần lượt là a,b,c và d. Giá trị của biểu thức (a+2b+3c+4d) gần giá trị nào nhất sau đây?
A. 610V
B. 878V
C. 803V
D. 520V
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
Ta dễ có tứ giác ABDE nội tiếp đường tròn đường kính AB => ^CDE = ^BAE
Lại có ^BAE = ^CAD (= 900 - ^ACB), suy ra ^CDE = ^CAD = 900 - ^ACD => DE vuông góc AC
Thấy D,E,P cùng có tung độ bằng 1 => D,E,P thẳng hàng, vì P thuộc AC nên DE vuông góc với AC tại P
Đường thẳng AC: đi qua P(2;1), VTPT \(\overrightarrow{DE}=\left(5;0\right)\) \(\Rightarrow AC:x-2=0\)
Xét hệ: \(\hept{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow A\left(2;0\right)\)
Đường thẳng BC: đi qua \(D\left(-2;1\right)\),VTPT \(\overrightarrow{DA}=\left(4;-1\right)\Rightarrow BC:4x-y+9=0\)
Xét hệ: \(\hept{\begin{cases}x-2=0\\4x-y+9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=17\end{cases}\Rightarrow C\left(2;17\right)}\)
Đường thẳng BE: đi qua \(E\left(3;1\right)\), VTPT \(\overrightarrow{AE}=\left(1;1\right)\Rightarrow BE:x+y-4=0\)
Xét hệ: \(\hept{\begin{cases}4x-y+9=0\\x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=5\end{cases}}\Rightarrow B\left(-1;5\right)\)
Vậy \(A\left(2;0\right),B\left(-1;5\right),C\left(2;17\right)\).
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
Cho hình chóp S.ABCD có SA ⊥ ABC . Tam giác ABC vuông tại B. Gọi H là chân đường vuông góc hạ từ A xuống SB. Khẳng định nào sau đây sai?
A. SA ⊥ BC
B. AH ⊥ BC
C. AH ⊥ AC
D. AH ⊥ SC
Cho hình chóp S.ABCD có SA ⊥ (ABC)Tam giác ABC vuông tại B. Gọi H là chân đường vuông góc hạ từ A xuống SB. Khẳng định nào sau đây sai?
A. SA ⊥ BC
B. AH ⊥ BC
C. AH ⊥ AC
D. AH ⊥ SC
Trong mặt phẳng với hệ tọa độ Oxy Cho tam giác ABC nội tiếp trong đường tròn tâm I; có đỉnh A thuộc đường thẳng d: x + y - 2 = 0, D(2; -1) là chân đường cao của tam giác ABC hạ từ đỉnh A. Gọi điểm E(3; 1) là chân đường vuông góc hạ từ B xuống AI; điểm P(2;1) thuộc đường thẳng AC. Tìm tọa độ các đỉnh của tam giác ABC.
MAT DAY LOP 6,7,8,9 MA DUA LOP 1 , MAT DAY DI MA