Cho hai phân thức P Q và R S thỏa mãn P Q = R S và P ≠ Q.
Chứng minh: R ≠ S và P Q + P = R S + R .
1. trong mỗi trường hợp sau tìm hai đa thức P và Q thõa mãn đẳng thức
a)\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x-1\right)Q}{x^2-4}\)
b)\(\frac{\left(x+2\right)P}{x^2-1}=\frac{\left(x-2\right)Q}{x^2-2x+1}\)
2, cho hai phân thức \(\frac{P}{Q}\)và \(\frac{R}{S}\). chứng tỏ rằng:
a) nếu\(\frac{P}{Q}=\frac{R}{S}\) thì \(\frac{P+Q}{Q}=\frac{R+S}{S}\)
b) nếu\(\frac{P}{Q}=\frac{R}{S}\) và\(P\ne Q\) thì\(R\ne S\) và\(\frac{P}{Q-P}=\frac{R}{S-R}\)
Cho đơn thức P = ( - 2 x 3 y ) , Q = 1 / 2 x 3 y . Đơn thức R thỏa mãn P + R = Q là:
A. R = 5 2 x 2 y
B. R = 5 2 x 3 y
C. R = - 5 2 x 3 y
D. R = 3 2 x 2 y
Ta có P + R = Q ⇒ R = Q - R = 1/2 x3y-(-2) x3y =5 /2 x3y. Chọn B
Cho hai phân thức \(\dfrac{P}{Q}\) và \(\dfrac{R}{S}\).
Chứng tỏ rằng :
a) Nếu \(\dfrac{P}{Q}=\dfrac{R}{S}\) thì \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) Nếu \(\dfrac{P}{Q}=\dfrac{R}{S}\) và \(P\ne Q\) thì \(R\ne S\) và \(\dfrac{P}{Q-P}=\dfrac{R}{S-R}\)
a)
\(\dfrac{P}{Q}=\dfrac{R}{S}\Rightarrow PS=QR\)
\(\Leftrightarrow PS+QS=QR+QS\)
\(\Leftrightarrow S\left(P+Q\right)=Q\left(R+S\right)\)
điều kiện Q,s khác 0 => chia hau vế cho QS
\(\Leftrightarrow\dfrac{S\left(P+Q\right)}{QS}=\dfrac{Q\left(R+S\right)}{QS}\Leftrightarrow\dfrac{\left(P+Q\right)}{Q}=\dfrac{\left(R+S\right)}{S}\) đpcm
Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn I M = 3 R 2 . Hai mặt phẳng (P), (Q) qua M tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng 60°. Độ dài đoạn thẳng AB bằng:
A. AB=R
B. AB=R 3
C. AB= 3 R 2
D. AB=R hoặc AB=R 3
Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn I M = 3 R 2 . Hai mặt phẳng (P), (Q) qua M tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng 60°. Độ dài đoạn thẳng AB bằng
A. R
B. R 3
C. 3 R 2
D. R hoặc R 3
Chứng minh đẳng thức P − Q Q = R − S S và hai phân thức P Q và R S thỏa mãn P Q = R S .
Xuất phát từ điều cần chứng minh
Rút gọn còn PS = RQ hay P Q = R S .
Cho mặt cầu (S) tâm I bán kính R . M là điểm thỏa mãn IM = 3 R 2 . Hai mặt phẳng (P),(Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng 60 ∘ . Độ dài đoạn thẳng AB bằng:
Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn I M = 3 R 2 . Hai mặt phẳng (P), (Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng 60 o . Độ dài đoạn thẳng AB bằng:
A. AB=R
B. AB=R 3
C . A B = 3 R 2
D . A B = R h o ặ c A B = R 3
Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn I M = 3 R 2 . Hai mặt phẳng (P), (Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng 60 0 . Độ dài đoạn thẳng AB bằng
A. A B = R
B. A B = R 3
C. A B = 3 R 2
D. A B = R hoặc A B = R 3