Cho hai phân thức y 2 + 5 y + 6 3 y + 6 và 2 y 2 + 5 y − 3 6 y − 3 với y ≠ − 2 và y ≠ 1 2 . Cặp phân thức này có bằng nhau hay không?
Xét hai phân thức \(M = \dfrac{x}{y}\) và \(N = \dfrac{{{x^2} + x}}{{xy + y}}\)
a) Tính giá trị của các phân thức trên khi \(x = 3\), \(y = 2\) và khi \(x = - 1\), \(y = 5\).
Nêu nhận xét về giá trị của \(M\) và \(N\) khi cho \(x\) và \(y\) nhận những giá trị nào đó (\(y \ne 0\) và \(xy - y \ne 0\)).
b) Nhân tử thức của phân thức này với mẫu thức của phân thức kia, rồi so sánh hai đa thức nhận được.
a) Điều kiện xác định của phân thức \(M\): \(y \ne 0\)
Điều kiện xác định của phân thức \(N\): \(xy + y \ne 0\) hay \(xy \ne - y\)
Khi \(x = 3\), \(y = 2\) (thoả mãn điều kiện xác định), ta có:
\(M = \dfrac{3}{2}\)
\(N = \dfrac{{{3^2} + 3}}{{3.2 + 2}} = \dfrac{{9 + 3}}{{6 + 2}} = \dfrac{{12}}{8} = \dfrac{3}{2}\)
Vậy \(M = N = \dfrac{3}{2}\) khi \(x = 3\), \(y = 2\)
Khi \(x = - 1\), \(y = 5\) (thỏa mãn điều kiện xác định của \(M\)) ta có:
\(M = \dfrac{{ - 1}}{5}\)
Vậy \(M = \dfrac{{ - 1}}{5}\) khi \(x = - 1\), \(y = 5\)
Khi \(x = - 1\), \(y = 5\) thì \(xy + y = \left( { - 1} \right).5 + 5 = 0\) nên không thỏa mãn điều kiện xác định của \(N\). Vậy giá trị của phân thức \(N\) tại \(x = - 1\), \(y = 5\) không xác định.
b) Ta có:
\(x.\left( {xy + y} \right) = {x^2}y + xy\)
\(\left( {{x^2} + x} \right).y = {x^2}y + xy\)
Vậy \(x\left( {xy + y} \right) = \left( {{x^2} + x} \right)y\)
Trắc nghiệm chọn đáp án đúng
1) điều kiệm để biểu thức 2 phần x-1 là một phân thức
A)x#1 ;b) x=1; c) x#0 ; d) x=0
2) phân thức bằng với phân thức 1-x phần y-x là:
A) x-1 phần y-x ; b) 1-x phần x-y ; c) x-1 phần x-y ; d) y-x phần 1-x
3) kết quả rút gọn của phân thức 2xy(x-y)^2 phần x-y bằng:
a) 2xy^2 ;b) 2xy(x-y) ; c) 2(x-y)^2; d) (2xy)^2
4) hai phân thức 1 phần 4x^2 y và 5 phần 6xy^3 z có mẫu thức chung đơn giản nhất là:
a) 8x^2 y^3 z ; b) 12 x^3 y^3 z ; c) 24 x^2 y^3 z ; d) 12 x^2 y^3 z
5) phân thức đối của phân thức 3x phần x+y là:
A) 3x phần x-y ;b) x+y phần 3x ;c) -3x phần x+y ;d) -3x phần x-y
6) phân thức nghịch đảo của phân thức -3y^2 phần 2x là:
A) 3y^2 phần 2x ; b) -2x^2 phần 3y ; c) -2x phần 3y^2 ; d) 2x phần 3y^2
1. Cho các đơn thức: A= 3/2 * x ^ 3 * y ^ 2 .(-8x^ 5 y^ 6 ), B=2xy^ 5 . (- 7x ^ 7 * y ^ 3)
a) Xác định phần hệ số, phần biến của các đơn thức trên.
b) Tính A + B
2. Cho hai đa thức : A = 2x ^ 2 - 6xy + 4y ^ 2 B = - 5x ^ 2 + 4xy + 7y ^ 2
Tính giá trị của đa thức C = A - B tại x = 1, y = 1/2
3. Cho a, b, c thỏa mãn a + b + c = 0 . Chứng minh rằng : ab + 2bc + 3ca <= 0
Bài 2:
C=A-B
\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)
\(=7x^2-10xy-3y^2\)
\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
Bài 1 cho hai phân số 3/5 và 4/5
A Tìm một phân số tối giản nằm giữa hai phân số
b tìm hai phân số tối giản nằm giữa hai phân số
Bài 2 tìm a biết
1/5 × 3 phần a x 4/7= 2 x 3 x 4 phần 5 x 6 x 7
Bài 3 Tìm số tự nhiên y biết
Y phần 4 nhỏ hơn 9/12
B 9phần y lớn hơn 4/6
C 3 phần 8 trừ y y lớn hơn 12 phần 16
Bài 1:
a,Ta có:\(\frac{3}{5}=\frac{3\times2}{5\times2}=\frac{6}{10}\) (1)
\(\frac{4}{5}=\frac{4\times2}{5\times2}=\frac{8}{10}\) (2)
Từ (1) và (2)=> Một phân số tối giản nằm giữa hai phân số trên là:\(\frac{7}{10}\)
b,Ta có:\(\frac{3}{5}=\frac{3\times3}{5\times3}=\frac{9}{15}\)
\(\frac{4}{5}=\frac{4\times3}{5\times3}=\frac{12}{15}\)
=> hai phân số ở giữa là:\(\frac{10}{15}=\frac{2}{3};\frac{11}{12}\)
Cho hai phân thức y + 4 2 y và y 2 − 16 3 y + 1 với y ≠ − 1 3 ; y ≠ 0 và y ≠ 4 .
Biến đổi hai phân thức này thành cặp phân thức bằng nó và có cùng tử thức.
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Cho hai đơn thức A= 1/5.x^2.y^3 và B=1/6.x^3.y^2.
a)Hãy xác định hệ số, phần biến và bậc của 2 đơn thức A và B
b)Tính A.B
a: Đơn thức A: Hệ số là 1/5
Phần biến là \(x^2;y^3\)
Bậc là 5
Đơn thức B: Hệ số là 1/6
Phần biến là \(x^3;y^2\)
Bậc là 5
b: \(A\cdot B=\dfrac{1}{30}x^5y^5\)
Cho hai đơn thức A= 1/5.x^2.y^3 và B=1/6.x^3.y^2.
a)Hãy xác định hệ số, phần biến và bậc của 2 đơn thức A và B
b)Tính A.B
A = 1/5x^2y^3
hệ số 1/5 ; biến x^2y^3 ; bậc 5
B = 1/6x^3y^2
hệ số 1/6 ; biến x^3y^2 ; bậc 5
b, \(AB=\dfrac{1}{5}x^2y^3.\dfrac{1}{6}x^3y^2=\dfrac{1}{30}x^5y^5\)
\(\frac{y^2-12}{6y-36}+\frac{6}{y^2-6y}\)
cộng hai phân thức khác mẫu nha
\(\frac{y^2-12}{6y-36}+\frac{6}{y^2-6y}=\frac{y^2-12}{6\left(y-6\right)}+\frac{6}{y\left(y-6\right)}\)\(=\frac{\left(y^2-12\right)y}{6y\left(y-6\right)}+\frac{36}{6y\left(y-6\right)}\)
\(=\frac{y^3-12y+36}{6y\left(y-6\right)}\)
nếu mk ko nhầm thì \(y-12\) chứ sao y^2-12
\(\frac{y^2-12}{6y-36}+\frac{6}{y^2-6y}=\frac{y^2-12}{6\left(y-6\right)}+\frac{6}{y\left(y-6\right)}=\frac{y^3-12y}{6y\left(y-6\right)}+\frac{36}{6y\left(y-6\right)}=\frac{y^3-12y+36}{6y\left(y-6\right)}\)