Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 5 2018 lúc 5:26

Đáp án C.

+ Hình A: Tồn tại mặt bên không phải hình thang.

+ Hình B: Các cạnh bên không đồng quy.

+ Hình D: Các cạnh bên không đồng quy.

+ Hình C: Các mặt bên là các hình thang và các cạnh bên đồng quy nên C là hình chóp cụt.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2019 lúc 4:27

 

Đáp án C.

+ Hình A: Tồn tại mặt bên không phải hình thang.

+ Hình B: Các cạnh bên không đồng quy.

+ Hình D: Các cạnh bên không đồng quy.

+ Hình C: Các mặt bên là các hình thang và các cạnh bên đồng quy nên C là hình chóp cụt.

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 10 2018 lúc 12:57

Jaki Natsumi
Xem chi tiết
Lệ Trần
19 tháng 1 2022 lúc 11:21

Các mặt phẳng đối xứng của hình chóp tứ giác đều S.ABCDS.ABCD là các mặt phẳng:

– Mp(SAC)(SAC)

– Mp(SBD)(SBD)

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Hai Binh
13 tháng 5 2017 lúc 9:19

\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)

\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)

Trong tamn giác vuông A'HA:

\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)

Từ đó tính tiếp sẽ ra chiều cao hình chóp

Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)

Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)

Nguyen Thuy Hoa
5 tháng 7 2017 lúc 10:38

Hình lăng trụ đứng. Hình chóp đều.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2017 lúc 15:14

Chọn C.

Điều kiện để hình chóp nội tiếp được trong một mặt cầu là đáy của nó nội tiếp trong một đường tròn. Một tứ giác bất kì chưa chắc nội tiếp trong một đường tròn.

Nguyễn Thảo Nhi
1 tháng 10 2021 lúc 10:55

Chọn C vì điều kiện để hình chóp nội tiếp được trong một mặt cầu là đáy của nó nội tiếp trong một đường tròn. Một tứ giác bất kì chưa chắc nội tiếp trong một đường tròn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 6 2019 lúc 14:48

Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.

Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.

Do đó diện tích xung quanh của hình chóp cụt đều là:

S x q  = 4.(a+b)/2.MM′=(2a+2b).MM′

Từ giả thiết ta có:

(2a+2b).MM′= a 2 + b 2  Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2

Trong tam giác vuông MHM' ta có: M M ' 2 = M H 2 + H M ' 2 = h + b - a / 2 2  (2)

Từ (1) và (2) suy ra :

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Sách Giáo Khoa
Xem chi tiết
Trần Kiều Anh
10 tháng 5 2017 lúc 14:20

Xét hình chóp cụt đều ABCD.AB'C'D'

Gọi M ,M' thứ tự là trung điểm của BC , B'C' . Khi đó MM' là đường cao của hình thang cân BCC'B' . Do đó diện tích xung quanh của hình chóp cụt đều là :

\(S_{xq}=4.\dfrac{a+b}{2}.MM'=\left(2a+2b\right).MM'\)

Từ giả thiết , ta có :

\(\left(2a+2b\right).MM'=a^2+b^2hayMM'=\dfrac{a^2+b^2}{2\left(a+b\right)}\left(1\right)\)

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O') . Trong mặt phẳng (OMM'O') , kẻ MH \(\perp\) O'M' . Khi đó : \(HM'=O'M'-O'H=\dfrac{b-a}{2}\)

Trong tam giác vuông MHM' ta có :

\(MM'^2=MH^2+HM'^2=h^2+\left(\dfrac{b-a}{2}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra :

\(h^2+\left(\dfrac{b-a}{2}\right)^2=\dfrac{\left(a^2+b^2\right)^2}{4\left(a+b\right)^2}\)

\(\Rightarrow h^2=\dfrac{\left(a^2+b^2\right)^2-\left(b^2-a^2\right)^2}{4\left(a+b\right)^2}=\dfrac{a^2b^2}{\left(a+b\right)^2}\)

Vậy \(h=\dfrac{ab}{a+b}\)

Nguyen Thuy Hoa
5 tháng 7 2017 lúc 10:26

Hình lăng trụ đứng. Hình chóp đều.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 9 2019 lúc 15:26

Phát biểu c) đúng