Cho hai đường thẳng d1: 3x+4y-2=0; d2: y-2=0. Phương trình đường phân giác của d1 và d2 là
A. 3x-y+8=0, x+3y-4=0
B. 3x-y+8=0, 3x+9y+12=0
C. 3x-y-8=0, 3x+9y-12=0
D. 3x-y-8=0, x+3y+4=0
Cho hai đường thẳng d 1 : 3x – 4y +2 = 0 và d 2 : mx +2y – 3 = 0. Hai đường thẳng song song với nhau khi:
A.m = 3
B.m = 3/2
C.m = -3/2
D.m = -3
Hai đường thẳng song song khi m 3 = 2 − 4 ≠ − 3 2 n ê n m = − 3 2
Chọn đáp án C.
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x - 4y + 5 = 0 và d2: mx + 3y - 3 = 0. Giá trị của m để khoảng cách từ A đến d1 gấp hai lần khoảng cách từ A đến đường thẳng d2 là:
A. m = ± 1
B. m = ± 15 3
C. m = ± 4
D. m = ± 15 5
Cho hai đường thẳng d1: 3x+4y+5 và d2: 3x-4y-5=0. Viết phương trình đường tròn có tâm đi qua d: x-6y-10=0 tiếp xúc với hai đường d1 và d2
Do tâm I của đường tròn thuộc d nên tọa độ I có dạng \(I\left(6a+10;a\right)\)
Đường tròn tiếp xúc d1 và d2
\(\Leftrightarrow d\left(I;d_1\right)=d\left(I;d_2\right)\)
\(\Leftrightarrow\frac{\left|3\left(6a+10\right)+4a+5\right|}{\sqrt{3^2+4^2}}=\frac{\left|3\left(6a+10\right)-4a-5\right|}{\sqrt{3^2+\left(-4\right)^2}}\)
\(\Leftrightarrow\left|22a+35\right|=\left|14a+25\right|\)
\(\Rightarrow\left[{}\begin{matrix}22a+35=14a+25\\22a+35=-14a-25\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-\frac{5}{4}\\a=-\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(\frac{5}{2};-\frac{5}{4}\right)\\I\left(0;-\frac{5}{3}\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn:
\(\left[{}\begin{matrix}\left(x-\frac{5}{2}\right)^2+\left(y+\frac{5}{4}\right)^2=\frac{9}{4}\\x^2+\left(y+\frac{5}{3}\right)^2=\frac{1}{9}\end{matrix}\right.\)
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x – 4y + 2 = 0 và d2: mx + 3y – 3 = 0. Giá trị của m để khoảng cách từ A đến hai đường thẳng bằng nhau là:
A. m = ± 1
B. m = 1 và m = 4
C. m = ± 4
D. m =- 1 và m = 4
Sử dụng công thức khoảng cách ta có
3. − 2 − 4.1 + 2 3 2 + − 4 2 = m − 2 + 3.1 − 3 m 2 + 3 2
⇔ 8 5 = − 2 m m 2 + 9 ⇔ 8 m 2 + 9 = 10 m ⇔ 64 ( m 2 + 9 ) = 100 m 2 ⇔ 64 m 2 + 576 = 100 m 2 ⇔ 36 m 2 = 576 ⇔ m 2 = 16 ⇔ m = ± 4
Đáp án là phương án C.
Chú ý. Học sinh có thể thử lại các phương án được đưa ra để chọn đáp án đúng, tuy nhiên sẽ tốn nhiều thời gian hơn là làm bài toán trực tiếp.
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d 1 : 2 x - 4 y - 3 = 0 và d 2 : 3 x - y + 17 = 0 . Số đo góc giữa d 1 và d 2 là
A. 45 °
B. 90 °
C. 30 °
D. 60 °
Cho 3 đường thẳng (d1):3x-2y+5=0, (d2):2x+4y-7=0, (d3):3x+4y-1=0. Viết phương trình đường thẳng(d) di qua giao điểm của (d1),(d2) và song song với (d3)
Gọi M là giao điểm của \(d_1\) và \(d_2\Rightarrow\) toạ độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-2y+5=0\\2x+4y-7=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{8};\frac{31}{16}\right)\)
Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt
Phương trình d:
\(3\left(x+\frac{3}{8}\right)+4\left(y-\frac{31}{16}\right)=0\Leftrightarrow24x+32y-53=0\)
Cho hai đường thẳng cắt nhau d 1 : 3 x − 4 y + 1 = 0 v à d 2 : x + 3 = 0 . Phương trình các phân giác góc tạo bởi d1d2 là
A.x + 2y + 7 = 0 và 2x – y + 7 = 0
B.x + 2y + 4 = 0 và 2x – y + 4 = 0
C.x + 2 y + 7 = 0 và 2x – y + 4 = 0
D.x + 2y – 7 = 0 và 2x – y – 7 = 0
Cho 2 đường thẳng cắt nhau d 1 : a 1 x + b 1 y + c 1 = 0 v à d 2 : a 2 x + b 2 y + c 2 = 0 .
Khi đó, phương trình đường phân giác tạo bởi 2 đường thẳng là:
a 1 x + b 1 y + c 1 a 1 2 + b 1 2 = ± a 2 x + b 2 y + c 2 a 2 2 + b 2 2
Áp dụng công thức ta có phương trình hai phân giác là:
3 x − 4 y + 1 3 2 + ( − 4 ) 2 = ± x + 3 1 2 + 0 2 ⇔ 3 x − 4 y + 1 5 = ± ( x + 3 ) ⇔ 3 x − 4 y + 1 = ± 5 x + 3 ⇔ 2 x + 4 y + 14 = 0 8 x − 4 y + 16 = 0 ⇔ x + 2 y + 7 = 0 2 x − y + 4 = 0
ĐÁP ÁN C
Khoảng cách giữa hai đường thẳng song song d1:6x-8y-101=0 và d2:3x-4y=0 bằng
Lấy \(O\left(0;0\right)\) là 1 điểm thuộc \(d_2\)
\(\Rightarrow d\left(d_1;d_2\right)=d\left(O;d_1\right)=\dfrac{\left|6.0-8.0-101\right|}{\sqrt{6^2+\left(-8\right)^2}}=\dfrac{101}{10}\)
Khoảng cách giữa hai đường thẳng d 1 : 6 x - 4 y + 5 = 0 v à d 2 : 3 x - 2 y + 1 = 0 bằng bao nhiêu?
A. 6 52
B. 5 52
C. 4 52
D. 3 52
Ta có d 2 : 3 x − 2 y + 1 = 0 ⇔ 6 x − 4 y + 2 = 0
Ta có điểm A(-1; 1) thuộc đường thẳng d2,.
Vì hai đường thẳng d1 và d2 song song với nhau nên ta có:
d ( d 1 ; d 2 ) = d ( A ; d 1 ) = 6. ( − 1 ) − 4. ( − 1 ) + 5 6 2 + ( − 4 ) 2 = 3 52
ĐÁP ÁN D