Trong hệ tọa độ Oxy, cho hai điểm A(2; -3); B (3; 4) Tìm tọa độ điểm M thuộc trục hoành sao cho A, B, M thẳng hàng.
A. M (1 ; 0)
B. M(4; 0)
C. M − 5 3 ; − 1 3 .
D. M 17 7 ; 0 .
Trong hệ tọa độ Oxy, cho hai điểm A(2 ; -3) ; B ( 4 ; 7). Tìm tọa độ trung điểm I của đoạn thẳng AB
A. I( 6 ; 4)
B. I (2 ; 10)
C. I (3 ; 2)
D. I( 8; -21)
x I = 2 + 4 2 = 3 y I = − 3 + 7 2 = 2 ⇒ I 3 ; 2 .
Đáp án C
Trong hệ tọa độ Oxy, cho hai điểm A(2; -3) ; B(4; 7). Tìm tọa độ trung điểm I của đoạn thẳng AB?
A. (6; 4)
B.(2; 10)
C. (3; 2)
D.( 8; -21)
x I = 2 + 4 2 = 3 y I = − 3 + 7 2 = 2 ⇒ I 3 ; 2 .
Đáp án C
Trong hệ tọa độ Oxy, cho hai điểm A(1; 2) ; B(- 2; 3). Tìm tọa độ đỉểm I sao cho I A → + 2 I B → = 0 → .
A. I 1 ; 2 .
B. I 1 ; 2 5 .
C. I − 1 ; 8 3 .
D. I 2 ; − 2 .
Trong mp với hệ tọa đô Oxy cho hai điểm A(1;-2), B(-4;5). Tìm tọa độ điểm M trên trục Oy sao cho 3 điểm M,A,B thẳng hàng
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
1.Trong mặt phẳng hệ tọa độ Oxy, viết phương trình đường thẳng Δ qua M(1,2) cắt Ox tại A, cắt Oy tại B sao cho OA+OB =12 2.Cho 3 điểm A(2,0), B(3,4), C(1,1), Viết phương trình đưởng thẳng qua C cách đều hai điểm A, B 3.Trong hệ tọa độ Oxy cho tam giác ABC có BC= x+y=9=0, đường cao B, C lần lượt là: d1: x+2y-13=0, d2:7x=5y-49=0. Tìm tọa độ điểm A
Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho hai điểm A(-2,3), B(1,-6). Tọa độ vecto AB là?
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
Trong hệ tọa độ Oxy cho hai điểm A(2,-3),B(3,-4). Tìm tọa độ điểm M trên trục hoành sao cho chu vi tam giác AMB nhỏ nhất
Bài toán cơ bản: Cho hai điểm A; B và một đường thẳng d cố định, tìm điểm C thuộc d sao cho chu vi tam giác ABC nhỏ nhất hay cũng chính là tìm C sao cho \(AC+BC\) nhỏ nhất.
Nhận thấy \(y_A\) và \(y_B\) cùng dấu nên A và B nằm cùng 1 phía đối với trục hoành, M là điểm bất kì thuộc Ox
Gọi D là điểm đối xứng A qua Ox \(\Rightarrow D\left(2;3\right)\) và \(MA=MD\)
Trong tam giác DBM, theo BĐT tam giác ta luôn có:
\(AM+BM=MD+BM\ge BD\Rightarrow BM+MD\) nhỏ nhất khi M, B, D thẳng hàng hay M là giao điểm của BD và Ox
\(\overrightarrow{BD}=\left(-1;7\right)\Rightarrow\) đường thẳng BD nhận \(\overrightarrow{n}=\left(7;1\right)\) là 1 vtpt
Phương trình BD: \(7\left(x-3\right)+1\left(y+4\right)=0\Rightarrow7x+y-17=0\)
Tọa độ của M là nghiệm: \(\left\{{}\begin{matrix}y=0\\7x+y-17=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{17}{7}\\y=0\end{matrix}\right.\)
trong mặt phẳng hệ tọa độ Oxy cho hai điểm A(3;-1) ; B(1;1) . Tìm tọa độ điểm E biết điểm E thuộc trục tung và 3 điểm A , B , E thẳng hàng .
trong hệ tọa độ Oxy , cho 2 điểm A( 2;2 ) và B( 1;5 ) . tìm tọa độ điểm M trên trục tung sao cho độ dài MA + MB nhỏ nhất