Nghiệm nguyên nhỏ nhất của bất phương trình log 2 log 4 x > log 4 log 2 x là:
A. 18
B. 16
C. 15
D. 17
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tìm số nghiệm nguyên của bất phương trình log 5 2 ( 3 x - 2 ) log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tập nghiệm của bất phương trình
log ( x 2 - 4 ) > log ( 3 x ) là:
Tập nghiệm của bất phương trình log 2 x - 1 ≥ log x là
Tập nghiệm của bất phương trình log(x2 + 25) > log(10x) là
Có bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình dưới đây:
log (x - 40) + log (60 - x) < 2?
A. 20
B. 10
C. Vô số
D. 18
Đáp án D
Điều kiện 40 < x < 60
Vậy x cần tìm theo yêu cầu đề là các số nguyên dương chạy từ 41 đến 59; trừ giá trị 50. Có tất cả 18 giá trị thỏa mãn.
Có tất cả bao nhiêu số nguyên m để phương trình log ( m - x ) = 3 log ( 4 - 2 x - 3 ) có hai nghiệm thực phân biệt.
A. 6.
B. 2.
C. 3.
D. 5.
Luyện tập – Vận dụng 8
Giải mỗi bất phương trình sau:
a) \({\log _3}x < 2\)
b) \({\log _{\frac{1}{4}}}\left( {x - 5} \right) \ge - 2\)
a, Điều kiện: x > 0
\(log_3\left(x\right)< 2\\ \Rightarrow0< x< 9\)
b, Điều kiện: x > 5
\(log_{\dfrac{1}{4}}\left(x-5\right)\ge-2\\ \Rightarrow x-5\le16\\ \Leftrightarrow5< x\le21\)
Số nghiệm nguyên của bất phương trình log ( 2 x 2 - 15 x + 37 ) ≤ 1 là
A. 4
B. 2
C. 1
D. 3
Tìm tập nghiệm của bất phương trình log ( x - 21 ) < 2 - log x
A. (-4; 25)
B. (0; 25)
C. (21; 25)
D. (25; +∞)