c) 2 2016 . 2 x - 1 = 2 2015
(2/3 + 3/4 + 4/5 +... + 2016/2017) x (1/2 + 2/3 + 3/4 + ...+ 2015/2016) - (1/2 + 2/3 + 3/4 +...+2015/2016) x (2/3 + 3/4 + 4/5 +...+2015/2016)
Cho khai triển: \(\left(1+x+x^2+...+x^{2015}\right)^{2016}=a_0+a_1x+a_2x^2+...+a_{4062240}x^{4062240}\). Tính giá trị biểu thức: \(T=C^0_{2016}a_{2016}-C^1_{2016}a^{2015}+C^2_{2016}a_{2014}-...+C^{2016}_{2016a_{ }0}\)
Mình nhầm \(C^1_{2016}a_{2015}\)thành \(C^1_{2016}a^{2015}\)
x-3/2015 + x-2/2016=c-2016/2+x-2015/3
\(\Leftrightarrow\frac{x-3}{2015}+\frac{x-2}{2016}-\frac{x-2016}{2}-\frac{x-2015}{3}=0\)
\(\Leftrightarrow\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)-\left(\frac{x-2016}{2}-1\right)-\left(\frac{x-2015}{3}-1\right)=0\)
\(\Leftrightarrow\frac{x-2018}{2015}+\frac{x-2018}{2016}-\frac{x-2018}{2}-\frac{x-2018}{3}=0\)
\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\Rightarrow x=2018\)
Bài 1 :
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
b, 2016 - { ( 2016 + 3) - [ (2016 + 3) - (- 2016 - 2) ] }
c, [ 2016 + (2016 + 3) ] - [ (2016 + 2) - (2016 - 2) ]
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
= -{-(2016+2015)-[-0-0]}
= -{-4031-0-0}
=-4031
(2/3 + 3/4 + 4/5 + .........+ 2016 /2017 ) x ( 1/2 + 2/3 + 3/4 + ......+ 2015 /2016) - ( 1/2 + 2/3 + 3/4 + ........2016 /2017 ) x 2/3 + 3/4 + 4/5 + .....+ 2015/2016)
Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:
Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).
Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:
Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).
Tìm x thuộc Z biết:
1) 2016+2015+2014+...+x = 2016
2) 1+2+3+...+x = 1275
3) | x+2015 | + | x+2016| = 1
thiện xạ 5a3 có thể giải chi tiết ra đc k? Mk cần cách lm
2) 1+2+3+...+x=1275
Có SSH là: (x+1):1+1=x(SH)
=> (x+1).x:2=1275
=>(x+1).x=1275.2
=>(x+1).x=2550
=>(x+1).x=51.50
=>x=50
3) |x+2015|+|x+2016|=1
Ta thấy |x+2015| và |x+2016| > hoặc = 0 với mọi x
=> 1= 0+1=1+0
+) x+2015=0=>x=-2015
x+2016=1=>x=-2015
+) x+2015=1=>x=-2014
x+2016=0=> x=-2016
Vậy xE{...}
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của:
A = |x+2015|-2016
B = 2|x+2015|+2016
C = |x-2015|+|x-2016|
D = |x-2015|+(x+2)2016+17
E = -|x-2015|+|x-2017|+(x-2016)2018.
GIẢI GIÚP MÌNH VỚI
Do |x+2015| lớn hoặc = 0 với mọi x nên A bé hơn hoặc bằng -2016
Dấu "=" xảy ra khi và chỉ khi x+2015=0
=> x=-2015
giải phương trình :\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
Tìm x biết:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)
=>|x-1|+|x-2|=2016
TH1: x<1
Pt sẽ là 1-x+2-x=2016
=>-2x+3=2016
=>-2x=2013
=>x=-2013/2(nhận)
TH2: 1<=x<2
Pt sẽ là x-1+2-x=2016
=>1=2016(loại)
TH3: x>=2
Pt sẽ là 2x-3=2016
=>2x=2019
=>x=2019/2(nhận)