Tìm x biết:
a) ( x – 3 ) 3 – ( x – 3 ) ( x 2 + 3 x + 9 ) + 9 ( x + 1 ) 2 = 15;
b) x(x – 5)(x + 5) – (x + 2)( x 2 - 2x + 4) = 3.
Bài 1: Tìm x biết:
a./ b./
c*./
Bài 2: Tìm x, y, z biết : a/ b/
c/
=
d/ e/
=
và x + y = 22 f/
và
Bài 3: Tìm x, y biết:
a) x : 3 = 4 : 5 b) (x+2).(x-3) = 0 c) x2 – 3x = 0 d) e) 9x =81
f)
h)
và x + y= -21 i)
và 3x - 2y = -2
k*) 2x = 3y = 5z và x + 2y – z = 29 l*) và 3x – 2y – z = -29
Bài 4. Tìm số nguyên x , biết:
a) |x - 2|= 0 b) |x + 3|= 1 c) -3 |4 - x|= -9 d) |2x + 1|= -2
Bài 5. Tìm số nguyên x, biết:
a) (x + 3)mũ 2 = 36 b) (x + 5)mũ 2 =100 c) (2x - 4)mũ 2 = 0 d) (x - 1)mũ 3 = 27
tìm x biết:
a.(x+3)^2-(x+3)(x-3)=0
b.5x(x^2+4)=0
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)
\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)
\(x^2+6x+9-x^2+9=0\)
\(6x+18=0\)
\(6x=-18\)
\(x=-3\)
Vậy x=-3
\(b,5x^3+20x=0\)
\(5x\left(x^2+4\right)=0\)
\(Th1:5x=0=>x=0\)
\(Th2:x^2+4=0\)
\(x^2=-4\)(vô lý)
Vậy x=0
Tìm x biết:
a) (2-x)3+(2+x)3-12x(x+1)=0
(2-x)^3+(2+x)^3-12x(x+1)=0
=>\(8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x\left(x+1\right)=0\)
=>\(12x^2+16-12x^2-12x=0\)
=>16-12x=0
=>4-3x=0
=>x=4/3
Tìm x, biết:
a. (3/4)^x= 2^8/3^4
Tìm x, y biết:
a)x.(y+1)=-7
b)(x-3).(y+2)=-3
a) Ta có bảng sau:
x | -1 | -7 | 7 | 1 |
y+1 | 7 | 1 | -1 | -7 |
y | 6 | 0 | -2 | -8 |
b) Ta có bảng sau:
x-3 | 1 | -3 | -1 | 3 |
y+2 | -3 | 1 | 3 | -1 |
x | 4 | 0 | 2 | 6 |
y | -5 | -1 | 1 | -3 |
Bài 3 (2đ): Tìm x biết:
a. (x - 8 )( x3+ 8) = 0
b. (4x - 3) – ( x + 5) = 3(10 - x)
\(a.\)
\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
\(S=\left\{8,-2\right\}\)
\(b.\)
\(\left(4x-3\right)-\left(x+5\right)=3\cdot\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{38}{6}\)
\(S=\left\{\dfrac{38}{6}\right\}\)
a) \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(x-8=0 => x=8\)
hoặc \(x^3+8=0\)=>\(x=-2\)
b) \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(< =>3x-8=3\left(10-x\right)\)
\(< =>3x-8-30+3x=0\)
\(< =>6x=38=>x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 3 (2đ): Tìm x biết:
a) (x - 8 )( x3 + 8) = 0
b) (4x - 3) – ( x + 5) = 3(10 - x)
a) (x - 8 )( x3 + 8) = 0
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x^3=-8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b)(4x - 3) – ( x + 5) = 3(10 - x)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow3x-8=30-3x\)
\(\Leftrightarrow3x-8-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Sửa lại câu `b) :`
`a)`
`( x-8 )( x^3 + 8 )`
`=> x-8=0` hoặc `x^3+8=0`
`=> x=8` hoặc `x^3 = -8=(-2)^3`
`=> x=8` hoặc `x=-2`
Vậy `x in { -2;8}`
`b)`
`( 4x-3 ) - ( x+5) = 3( 10-x)`
`=> 4x-3-x-5=30-3x`
`=> ( 4x-x)+(-3-5)=30-3x`
`=> 3x-8=30-3x`
`=> 6x=38`
`=> x=19/3`
Vậy `x=19/3`
`a)`
`( x-8 )( x^3 + 8 )`
`=> x-8=0` hoặc `x^3+8=0`
`=> x=8` hoặc `x^3 = -8=(-2)^3`
`=> x=8` hoặc `x=-2`
Vậy `x in { -2;8}`
`b)`
`( 4x-5 ) - ( x+5) = 3( 10-x)`
`=> 4x-5-x-5=30-3x`
`=> ( 4x-x)+(-5-5)=30-3x`
`=> 3x-10=30-3x`
`=> 6x=40`
`=> x=20/3`
Vậy `x=20/3`
Tìm x biết:
a. 13329 : x = 3 b. x : 8 = 5678
a: \(13329:x=3\)
=>\(x=\dfrac{13329}{3}=4443\)
b: x:8=5678
=>\(x=5678\cdot8=45424\)
Tìm x,biết:
a)2x.(x+4)-(x-1).(2x+3)=0
b)x2-2x-3=0
a) \(2x\left(x+4\right)-\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+8x-2x^2-x+3=0\)
\(\Leftrightarrow7x=-3\Leftrightarrow x=-\dfrac{3}{7}\)
b) \(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(a,\Leftrightarrow2x^2+8x-2x^2-x+3=0\\ \Leftrightarrow7x=-3\\ \Leftrightarrow x=-\dfrac{3}{7}\\ b,x^2-2x-3=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
a: Ta có: \(2x\left(x+4\right)-\left(x-1\right)\cdot\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+8x-2x^2-3x+2x+3=0\)
\(\Leftrightarrow7x=-3\)
hay \(x=-\dfrac{3}{7}\)
b: ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)